HGG-oncohistones project [source]
Configuration of project directory & analysis outputs:
Show full config
source(here("rr_helpers.R"))
# Set up outputs
message("Document index: ", doc_id)
## Document index: 03A
# Specify where to save outputs
out <- here("R-4/output", doc_id); dir.create(out, recursive = TRUE)
figout <- here("R-4/figures", doc_id); dir.create(figout, recursive = TRUE)
cache <- paste0(readLines(here("include/project_root.txt")), "R-4.1.2/", basename(here()), "/", doc_id, "/")
Outputs and figures will be saved at these paths, relative to project root:
## public/R-4/output/03A
## public/R-4/figures/03A
Setting a random seed:
set.seed(100)
Here we'll examine the similarity between HGGs and PFAs to their respective cells-of-origin based on epigenomic data across genomic features.
For this analysis, we obtained Paired-Tag data for different histone modifications and corresponding cell type specific epigenome prifles from Zhu et al, Nature Methods, 2021.
library(here)
# For genome analysis / references
library(GenomicRanges)
library(plotgardener)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
library(TxDb.Mmusculus.UCSC.mm10.knownGene)
library(org.Mm.eg.db)
library(rtracklayer)
# general purpose
library(tidyr)
library(dplyr)
library(ggrepel)
library(ggrastr)
library(readr)
library(glue)
library(tibble)
library(ggplot2)
library(purrr)
library(pheatmap)
library(stringr)
library(fgsea)
library(icytobox)
library(cowplot)
source(here("include/style.R"))
source(here("R-4/code/functions/plotgardener_helpers.R"))
ggplot2::theme_set(theme_min())
Load the sample metadata for the project:
meta <- read_tsv(here("data/metadata/metadata_patient_samples_NGS.tsv"))
## Registered S3 method overwritten by 'cli':
## method from
## print.boxx spatstat
## Rows: 138 Columns: 54
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (48): BioID, IC_Sample, IC_Patient, ID_paper, SC_QC, Type, Source, Sex, ...
## dbl (2): Age, RING1B
## lgl (4): Exclude_entirely, Smartseq2, Smartseq2_path, Smartseq2_ID2
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
meta_chip <- read_tsv(here("data/metadata/metadata_chip_all.tsv"))
## Rows: 172 Columns: 23
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (22): BioID, ID_paper, Location, Group, Factor, Material, CRISPR, Clone_...
## dbl (1): Replicate
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Import ChromHMM state calls from Zhu et al using rtracklayer::import())
:
# OPC is cluster 15 and ependymal is cluster 22
opc_chromhmm <- import(
here("data/Paired-Tag/Zhu_2021/ChromHMM/15_8_segments.bed"))
epen_chromhmm <- import(
here("data/Paired-Tag/Zhu_2021/ChromHMM/22_8_segments.bed"))
# subset to autosomes
chrs_keep <- paste0("chr", 1:29)
opc_chromhmm <- opc_chromhmm[seqnames(opc_chromhmm) %in% chrs_keep]
epen_chromhmm <- epen_chromhmm[seqnames(epen_chromhmm) %in% chrs_keep]
# load segment info
read_tsv(here("data/Paired-Tag/Zhu_2021/ChromHMM/README_segment.txt"))
## Rows: 7 Columns: 2
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (2): 2-Promoter-Weak, E1
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
First, subset to active/inactive genomic regions for each cell type:
active_states <- c("E1", "E2", "E3")
inactive_states <- c("E7", "E8")
opc_active <- opc_chromhmm[(elementMetadata(opc_chromhmm)[, "name"] %in% active_states)]
opc_inactive <- opc_chromhmm[(elementMetadata(opc_chromhmm)[, "name"] %in% inactive_states)]
epen_active <- epen_chromhmm[(elementMetadata(epen_chromhmm)[, "name"] %in% active_states)]
epen_inactive <- epen_chromhmm[(elementMetadata(epen_chromhmm)[, "name"] %in% inactive_states)]
Next, look for overlaps between active regions in one cell type and inactive in the other, requiring 50% overlap
# regions active in OPC and inactive in epen
hits <- findOverlaps(opc_active, epen_inactive)
overlaps <- pintersect(opc_active[queryHits(hits)], epen_inactive[subjectHits(hits)])
length(overlaps)
## [1] 418
percentOverlap <- width(overlaps) / width(opc_active[subjectHits(hits)])
hits <- hits[percentOverlap > 0.1]
opc_active_specific <- opc_active[queryHits(hits)]
length(opc_active_specific)
## [1] 416
# regions active in epen and inactive in OPC
hits <- findOverlaps(epen_active, opc_inactive)
overlaps <- pintersect(epen_active[queryHits(hits)], opc_inactive[subjectHits(hits)])
length(overlaps)
## [1] 291
percentOverlap <- width(overlaps) / width(epen_active[subjectHits(hits)])
hits <- hits[percentOverlap > 0.1]
epen_active_specific <- epen_active[queryHits(hits)]
length(epen_active_specific)
## [1] 291
That gives us 200-300 features which are specific to one cell type or another. The union over the two will be our genomic features:
elementMetadata(opc_active_specific)$celltype <- "OPC"
elementMetadata(epen_active_specific)$celltype <- "Ependymal"
Load BED file of mm10 genes, and look for overlaps:
mm10_genes_bed <- rtracklayer::import(here("data/ChIPseq/references/Ensembl.ensGene.mm10.collapsed.bed"))
mm10_genes_bed <- mm10_genes_bed[seqnames(mm10_genes_bed) %in% chrs_keep]
# add 5kb on either side
start(mm10_genes_bed) <- start(mm10_genes_bed) - 2500
# end(mm10_genes_bed) <- end(mm10_genes_bed) + 5000
# find nearest gene for each OPC element
opc_nearest_genes_idx <- nearest(opc_active_specific, mm10_genes_bed)
opc_nearest_genes <- mm10_genes_bed[opc_nearest_genes_idx]
opc_nearest_genes_hg <- opc_nearest_genes$name %>% sapply(str_split, ":") %>%
sapply(getElement, 2) %>%
mm2hg() %>%
unlist() %>%
unique()
# how many?
length(unique(opc_nearest_genes$name))
## [1] 300
# same thing for ependymal elements
epen_nearest_genes_idx <- nearest(epen_active_specific, mm10_genes_bed)
epen_nearest_genes <- mm10_genes_bed[epen_nearest_genes_idx]
length(unique(epen_nearest_genes$name))
## [1] 197
epen_nearest_genes_hg <- epen_nearest_genes$name %>% sapply(str_split, ":") %>%
sapply(getElement, 2) %>%
mm2hg() %>%
unlist() %>%
unique()
# mm
epen_nearest_genes_mm <- epen_nearest_genes$name %>% sapply(str_split, ":") %>%
sapply(getElement, 2) %>% unname() %>% unique()
opc_nearest_genes_mm <- opc_nearest_genes$name %>% sapply(str_split, ":") %>%
sapply(getElement, 2) %>% unname() %>% unique()
(common_mm <- base::intersect(opc_nearest_genes_mm, epen_nearest_genes_mm))
## [1] "Cbx8" "Rbfox1" "6030443J06Rik"
opc_nearest_genes_mm <- base::setdiff(opc_nearest_genes_mm, common_mm)
epen_nearest_genes_mm <- base::setdiff(epen_nearest_genes_mm, common_mm)
# hg
(common <- base::intersect(opc_nearest_genes_hg, epen_nearest_genes_hg))
## [1] "RBFOX1" "CBX8" ""
opc_nearest_genes_hg <- base::setdiff(opc_nearest_genes_hg, common)
epen_nearest_genes_hg <- base::setdiff(epen_nearest_genes_hg, common)
nearest_genes_hg_uniq <- c(opc_nearest_genes_hg,
epen_nearest_genes_hg)
length(nearest_genes_hg_uniq)
## [1] 413
# make a dataframe to annotate
feature_anno <- bind_rows(
data.frame("Feature" = opc_nearest_genes_hg,
"Cell_type" = "OPC"),
data.frame("Feature" = epen_nearest_genes_hg,
"Cell_type" = "Ependymal"))
# save
save(opc_nearest_genes_mm, epen_nearest_genes_mm,
opc_nearest_genes_hg, epen_nearest_genes_hg, nearest_genes_hg_uniq,
feature_anno,
file = glue("{out}/cell_type_specific_features.Rda"))
Next, we need to obtain the corresponding human features, quantify H3K27ac/H3K27me3/scATAC there, and then see first if the information in these features is enough to separate tumor types.
Loading the quantifications of ChIPseq for H3K27ac/me3 at gene promoters for tumors, we can use the cell-type specific genes as a reduced feature space, and perform PCA.
data_chip_wide <- read_tsv(here("output/02/TABLE_promoter_H3K27ac_H3K27me3_per_sample.tsv"))
## Rows: 66970 Columns: 93
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (4): ID, gene_symbol, chr, strand
## dbl (88): start, end, P-1411_S-1411-1__H3K27ac, P-1425_S-1425-2__H3K27ac, P-...
## lgl (1): Median_H3.1K27M_Thalamus_H3K27me3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# reformat promoter H3K27ac to a matrix
promoter_mat <- data_chip_wide %>%
select(-matches("Median|Z")) %>%
select(gene_symbol, 7:ncol(.)) %>%
filter(gene_symbol %in% nearest_genes_hg_uniq) %>%
distinct(gene_symbol, .keep_all = TRUE) %>%
tibble::column_to_rownames(var = "gene_symbol") %>%
t()
# sanity checks
dim(promoter_mat)
## [1] 69 400
length(unique(rownames(promoter_mat)))
## [1] 69
nearest_genes_hg_uniq[!(nearest_genes_hg_uniq %in% data_chip_wide$gene_symbol)]
## [1] "AC058822.1" "AL592490.1" "AC092329.3" "ZNF66" "AC115220.1"
## [6] "AL359922.1" "AC010615.4" "AC005154.6" "FP236240.1" "CU639417.1"
## [11] "AL117339.5" "FAM47E-STBD1" "MDFIC2"
feature_anno <- feature_anno %>%
filter(Feature %in% colnames(promoter_mat))
save(promoter_mat,
feature_anno,
file = glue("{out}/promoter_H3K27ac_H3K27me3_mat.Rda"))
dim(feature_anno)
## [1] 400 2
Next, we can verify that these features, which were selected by ChromHMM, do indeed correspond to high H3K27ac in the requisite cell type, and low in the other.
Load quantifications of promoter H3K27ac in OPC and ependymal cells using deeptools:
mm10_promoters <- rtracklayer::import(here("data/ChIPseq/references/Ensembl.ensGene.mm10.collapsed.promoter5kb.bounded.bed")) %>%
as.data.frame()
celltype_k27ac <- data.table::fread(here("R-4/output/03B/MBS_Ensembl.ensGene.mm10.collapsed.promoter5kb.tab"), data.table = FALSE)
colnames(celltype_k27ac) <- c("chr", "start", "end", "OPC", "Ependymal")
celltype_k27ac_anno <- celltype_k27ac %>%
# don't join by start, because import does start+1
left_join(mm10_promoters, by = c("chr" = "seqnames", "end" = "end")) %>%
separate(name, into = c("ENSID", "symbol"), sep = ":")
celltype_k27ac_anno_df <- celltype_k27ac_anno %>%
filter(symbol %in% c(opc_nearest_genes_mm, epen_nearest_genes_mm)) %>%
mutate(Feature_type = case_when(
symbol %in% opc_nearest_genes_mm ~ "OPC",
symbol %in% epen_nearest_genes_mm ~ "Ependymal"
)) %>%
select(symbol, Feature_type, OPC, Ependymal) %>%
distinct(symbol, .keep_all = TRUE)
p1 <- celltype_k27ac_anno_df %>%
arrange(OPC) %>%
mutate(symbol = factor(symbol, levels = unique(.$symbol))) %>%
ggplot(aes(x = symbol, y = OPC)) +
geom_point(stat = "identity", aes(colour = Feature_type), alpha = 0.5) +
geom_text_repel(data = celltype_k27ac_anno_df %>% top_n(30, OPC),
aes(label = symbol, colour = Feature_type), size = 3, max.overlaps = 30) +
scale_colour_manual(values = palette_type) +
rotate_x() +
theme(axis.text.x = element_blank()) +
ylab("Promoter H3K27ac of all cell-type specific features in OPCs") +
no_legend()
p2 <- celltype_k27ac_anno_df %>%
arrange(Ependymal) %>%
mutate(symbol = factor(symbol, levels = unique(.$symbol))) %>%
ggplot(aes(x = symbol, y = Ependymal)) +
geom_point(stat = "identity", aes(colour = Feature_type), alpha = 0.5) +
geom_text_repel(data = celltype_k27ac_anno_df %>% top_n(30, Ependymal),
aes(label = symbol, colour = Feature_type), size = 3, max.overlaps = 30) +
scale_colour_manual(values = palette_type) +
rotate_x() +
theme(axis.text.x = element_blank()) +
ylab("Promoter H3K27ac of all cell-type specific features in Ependymal cells") +
no_legend()
plot_grid(p1, p2, nrow = 1)
save(celltype_k27ac_anno_df, file = glue("{out}/celltype_k27ac_anno_df.Rda"))
This indicates that not all the features we selected are activated by H3K27ac in the appropriate cell type. We can select the top 15 in each:
discrim_features_mm <- c(celltype_k27ac_anno_df %>% top_n(20, OPC) %>% pull(symbol),
celltype_k27ac_anno_df %>% top_n(20, Ependymal) %>% pull(symbol))
discrim_features_hg <- discrim_features_mm %>% mm2hg() %>%
unlist() %>%
unique() %>%
discard(. == "") %>%
# make sure these features are present in tumors
keep(. %in% feature_anno$Feature)
In this analysis, we'll include all HGG and PFA tumors and cell lines:
samples_1 <- meta_chip %>%
filter(Group %in% c("HGG-H3.1/2K27M-Pons",
"HGG-H3.3K27M-Pons",
"HGG-H3.3K27M-Thalamus",
"PFA-EZHIP-PF",
"PFA-H3.1K27M-PF") &
(Material == "Tumor" | CRISPR == "Parental") &
!grepl("Nagaraja", Source)) %>%
filter(Factor == "H3K27ac") %>%
mutate(bw = gsub(".bw", "", basename(Path_bw))) %>%
select(ID_paper, Group, bw) %>%
filter(bw %in% rownames(promoter_mat))
promoter_H3K27ac_mat_1 <- promoter_mat[samples_1$bw, ]
dim(promoter_H3K27ac_mat_1)
## [1] 16 400
Representing these as a heatmap:
hm_fun <- purrr::partial(
pheatmap,
cluster_rows = TRUE,
cluster_cols = TRUE,
border_color = NA,
treeheight_row = 20,
treeheight_col = 20,
scale = "none",
show_rownames = TRUE,
show_colnames = TRUE,
annotation_col = samples_1 %>%
tibble::column_to_rownames(var = "bw") %>%
select(-ID_paper),
annotation_row = feature_anno %>% tibble::column_to_rownames(var = "Feature"),
annotation_colors = list("Group" = palette_groups,
"Cell_type" = palette_type),
color = rdbu2,
breaks = seq(-6, 6, length.out = 101),
fontsize_row = 6,
cellwidth = 10,
cellheight = 6)
# without H3.3K27Ms
samples_2 <- samples_1 %>% filter(Group %in% c("HGG-H3.1/2K27M-Pons",
"PFA-EZHIP-PF",
"PFA-H3.1K27M-PF")) %>%
filter(bw %in% rownames(promoter_mat))
hm_fun(mat = t(log2(promoter_H3K27ac_mat_1)[samples_2$bw, discrim_features_hg]),
cutree_cols = 2,
filename = glue("{figout}/celltype_H3K27ac_discrim_heatmap2.png"),
title = "Cell-type features discriminative of H3.1K27M HGG vs EZHIP PFA")
hm_fun(mat = t(log2(promoter_H3K27ac_mat_1)[samples_2$bw, discrim_features_hg]),
cutree_cols = 2,
filename = glue("{figout}/celltype_H3K27ac_discrim_heatmap2.pdf"),
title = "Cell-type features discriminative of H3.1K27M HGG vs EZHIP PFA")
knitr::include_graphics(glue("{figout}/celltype_H3K27ac_discrim_heatmap2.png"))
First, set the features in the mm10 genome:
opc_epen_features_mm10 <- list(
GRanges("chr5", 37777685:37864531, name = "Msx1"),
GRanges("chr9", 91336804:91408070, name = "Zic1/4"),
GRanges("chr14", 122442135:122513576, name = "Zic2/5"),
GRanges("chr16", 91197862:91254035, name = "Olig2"),
GRanges("chr2", 147137444:147241609, name = "Nkx2-2"),
GRanges("chr15", 79149288:79189457, name = "Sox10"))
params_mm <- map(opc_epen_features_mm10, ~ pgParams(chromstart = start(.x),
chromend = end(.x),
assembly = "mm10"))
names(params_mm) <- map(opc_epen_features_mm10, ~ .x$name)
Build the config file row-wise:
mm10_config <- tribble(
~Data, ~ID, ~Ymax, ~bw,
"RNAseq", "OPC scRNA", 151, "data/Paired-Tag/Zhu_2021/bigwig/Paired-Tag_RNA_OPC.bw",
"H3K27ac", "OPC scH3K27ac", 112, "data/Paired-Tag/Zhu_2021/bigwig/Paired-Tag_H3K27ac_OPC.bw",
"H3K27me3", "OPC H3K27me3", 70, "data/ChIPseq/references/Bartosovic_2021/Bulk/GSM4980053_P13556_1026_dedup.bw",
"RNAseq", "Epen. scRNA", 151, "data/Paired-Tag/Zhu_2021/bigwig/Paired-Tag_RNA_Ependymal.bw",
"H3K27ac", "Epen. scH3K27ac", 112, "data/Paired-Tag/Zhu_2021/bigwig/Paired-Tag_H3K27ac_Ependymal.bw"
) %>%
mutate(bw = here(bw))
# sanity check
all(file.exists(mm10_config$bw))
## [1] TRUE
# import chromHMM
chromhmm_epen <- rtracklayer::import(here("data/Paired-Tag/Zhu_2021/ChromHMM/cluster22_dense.bed"))
chromhmm_opc <- rtracklayer::import(here("data/Paired-Tag/Zhu_2021/ChromHMM/cluster15_dense.bed"))
(palette_chromhmm <- as.data.frame(chromhmm_opc) %>% select(name, itemRgb) %>% distinct() %>% deframe())
## 8 4 3 1 7 2 6 5
## "#C8C8C8" "#00688A" "#04B1EE" "#B3EE39" "#727171" "#008B45" "#C30D19" "#956134"
Construct the figure:
x_positions <- seq(0.5, 9, by = 1.25) + 1.5
y_positions <- seq(0.5, by = 0.4, length.out = nrow(mm10_config))
width <- 1
pageCreate(width = 11.5, height = 4, default.units = "inches")
# in this loop, for each region, we will
# 1. plot OPC bw
# 2. plot OPC ChromHMM
# 3. plot Epen. bw
# 4. plot Epen ChromHMM
# 5. plot genome labels
for (i in seq_along(params_mm)) {
x_i <- x_positions[i]
params_i <- params_mm[[i]]
chrom <- as.character(seqnames(opc_epen_features_mm10[[i]]))
# for the RNA & H3K27me3 bw files, chromsome names don't have the "chr" prefix...
chroms_i <- unlist(map(mm10_config$Data,
~ ifelse(.x %in% c("RNAseq", "H3K27me3"),
as.numeric(stringr::str_extract(chrom, "[0-9]+")),
chrom)))
pwalk(list(mm10_config$bw[1:3], mm10_config$Data[1:3], mm10_config$Ymax[1:3], y_positions[1:3], chroms_i[1:3]),
~ pg_placeSignalAndLabel(data = ..1,
color = palette_tracks[..2],
range = c(0, ..3),
y = ..4,
x = x_i,
chr = ..5,
params = params_i,
width = width,
height = 0.35))
plotRanges(chromhmm_opc, fill = chromhmm_opc$itemRgb, params = params_i, chrom = chrom, collapse = TRUE,
x = x_i, y = "0.05b", height = 0.1, width = width)
pwalk(list(mm10_config$bw[4:5], mm10_config$Data[4:5], mm10_config$Ymax[4:5], y_positions[4:5], chroms_i[4:5]),
~ pg_placeSignalAndLabel(data = ..1,
color = palette_tracks[..2],
range = c(0, ..3),
y = ..4 + 0.3, # add a bit to account for chromHMM track
x = x_i,
chr = ..5,
params = params_i,
width = width,
height = 0.35))
plotRanges(chromhmm_epen, fill = chromhmm_epen$itemRgb, params = params_i, chrom = chrom, collapse = TRUE,
x = x_i, y = "0.05b", height = 0.1, width = width)
# place 0.1in below last plot
plotGenomeLabel(params = params_i, chrom = chrom, scale = "Kb", x = x_i, y = "0.1b", length = width, fontsize = 8)
plotGenes(params = params_i, chrom = chrom, x = x_i, y = "0.25b", height = 0.5, width = width,
fontcolor = c("navy", "black"), fill = c("navy", "black"),
stroke = 0.05,
just = c("left", "top"), default.units = "inches")
}
# add data labels at left
pmap(list(c(mm10_config$ID[1:3], "OPC ChromHMM", mm10_config$ID[4:5], "Epen. ChromHMM"),
c(y_positions[1:3], 1.5, y_positions[4:5] + 0.3, 2.7)),
~ plotText(label = ..1, fonsize = 3, fontcolor = "black",
x = 0.2, y = ..2 + 0.2, just = c("left", "top"), default.units = "inches"))
## [[1]]
## text[text1]
##
## [[2]]
## text[text2]
##
## [[3]]
## text[text2]
##
## [[4]]
## text[text2]
##
## [[5]]
## text[text2]
##
## [[6]]
## text[text2]
##
## [[7]]
## text[text2]
pageGuideHide()
[figure @ public/R-4/figures/03Amm10_tracks...]
Define the regions in the human genome:
opc_epen_features_hg19 <- list(
GRanges("chr4", 4836193:4890861, name = "MSX1"),
GRanges("chr3", 147066046:147179311, name = "ZIC1/4"),
GRanges("chr13", 100595157:100661032, name = "ZIC2/5"),
GRanges("chr21", 34372339:34427397, name = "OLIG2"),
GRanges("chr20", 21475155:21511204, name = "NKX2-2"),
GRanges("chr22", 38344095:38403785, name = "SOX10"))
params_hg <- map(opc_epen_features_hg19, ~ pgParams(
chrom = as.character(seqnames(.x)),
chromstart = start(.x),
chromend = end(.x),
assembly = "hg19"))
names(params_hg) <- map(opc_epen_features_hg19, ~ .x$name)
Define the input samples:
hg19_config <- meta_chip %>%
filter(Group %in% c("HGG-H3.1/2K27M-Pons", "PFA-EZHIP-PF", "PFA-H3.1K27M-PF") &
Factor == "H3K27ac" &
grepl("Cell-of-origin", Analyses) &
Material == "Tumor") %>%
arrange(Group) %>%
distinct(ID_paper, .keep_all = TRUE) %>%
select(Data = Factor, ID_paper, Group, bw = Path_bw_internal) %>%
mutate(Ymax = case_when(
Group == "HGG-H3.1/2K27M-Pons" ~ 10,
grepl("PFA", Group) ~ 25))
# sanity check
all(file.exists(hg19_config$bw))
## [1] TRUE
# show IDs
print(hg19_config$ID_paper)
## [1] "DIPG14p" "DIPG21p" "DIPG23p" "DIPG32p"
## [5] "DIPG33p" "DIPG36p" "DIPG38p" "DIPG4p"
## [9] "P-1703_S-2705" "P-1741_S-2756" "SF5609t" "P-5425_S-6886"
## [13] "P-5426_S-6887" "P-5428_S-6889" "P-5430_S-6891" "P-2077_S-2077"
Construct the figure:
x_positions <- seq(0.5, 9, by = 1.25) + 1.5
y_positions <- seq(0.5, by = 0.25, length.out = nrow(hg19_config))
width <- 1
pageCreate(width = 11.5, height = 6.5, default.units = "inches")
for (i in seq_along(params_hg)) {
x_i <- x_positions[i]
params_i <- params_hg[[i]]
pwalk(list(hg19_config$bw, hg19_config$Group, hg19_config$Ymax, y_positions),
~ pg_placeSignalAndLabel2(data = ..1,
color = palette_groups[..2],
range = c(0, ..3),
y = ..4,
x = x_i,
params = params_i,
width = width,
height = 0.2))
plotGenomeLabel(params = params_i, scale = "Kb", x = x_i, y = "0.1b", length = width, fontsize = 8)
plotGenes(params = params_i, x = x_i, y = "0.25b", height = 0.75, width = width,
fontcolor = c("navy", "black"), fill = c("navy", "black"),
stroke = 0.05,
just = c("left", "top"), default.units = "inches")
}
# add data labels at left
pmap(list(hg19_config$ID, y_positions),
~ plotText(label = ..1, fonsize = 3, fontcolor = "black",
x = 0.2, y = ..2 + 0.1, just = c("left", "top"), default.units = "inches"))
## list()
pageGuideHide()
[figure @ public/R-4/figures/03Ahg19_tracks...]
This document was last rendered on:
## 2022-07-28 14:53:09
The git repository and last commit:
## Local: master /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public
## Remote: master @ origin (git@github.com:fungenomics/HGG-oncohistones.git)
## Head: [30e21fc] 2022-07-13: Update README
The random seed was set with set.seed(100)
The R session info:
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Rocky Linux 8.5 (Green Obsidian)
##
## Matrix products: default
## BLAS/LAPACK: /cvmfs/soft.computecanada.ca/easybuild/software/2020/Core/flexiblas/3.0.4/lib64/libflexiblas.so.3.0
##
## locale:
## [1] LC_CTYPE=en_CA.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_CA.UTF-8 LC_COLLATE=en_CA.UTF-8
## [5] LC_MONETARY=en_CA.UTF-8 LC_MESSAGES=en_CA.UTF-8
## [7] LC_PAPER=en_CA.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices datasets utils
## [8] methods base
##
## other attached packages:
## [1] magrittr_2.0.1
## [2] viridis_0.5.1
## [3] viridisLite_0.3.0
## [4] RColorBrewer_1.1-2
## [5] cowplot_1.1.1
## [6] icytobox_1.0.1
## [7] fgsea_1.20.0
## [8] stringr_1.4.0
## [9] pheatmap_1.0.12
## [10] purrr_0.3.4
## [11] tibble_3.1.6
## [12] glue_1.6.1
## [13] readr_2.1.1
## [14] ggrastr_0.2.3
## [15] ggrepel_0.9.1
## [16] ggplot2_3.3.5
## [17] dplyr_1.0.7
## [18] tidyr_1.1.4
## [19] rtracklayer_1.54.0
## [20] org.Mm.eg.db_3.14.0
## [21] TxDb.Mmusculus.UCSC.mm10.knownGene_3.10.0
## [22] org.Hs.eg.db_3.14.0
## [23] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [24] GenomicFeatures_1.46.4
## [25] AnnotationDbi_1.56.2
## [26] Biobase_2.54.0
## [27] plotgardener_1.0.14
## [28] GenomicRanges_1.42.0
## [29] GenomeInfoDb_1.26.7
## [30] IRanges_2.24.1
## [31] S4Vectors_0.28.1
## [32] BiocGenerics_0.36.1
## [33] here_1.0.1
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.2 reticulate_1.23
## [3] tidyselect_1.1.1 RSQLite_2.2.9
## [5] htmlwidgets_1.5.4 grid_4.1.2
## [7] BiocParallel_1.24.1 Rtsne_0.15
## [9] strawr_0.0.9 munsell_0.5.0
## [11] codetools_0.2-18 ica_1.0-2
## [13] future_1.23.0 miniUI_0.1.1.1
## [15] withr_2.4.3 colorspace_2.0-2
## [17] filelock_1.0.2 highr_0.9
## [19] knitr_1.37 Seurat_4.0.0
## [21] ROCR_1.0-11 tensor_1.5
## [23] listenv_0.8.0 MatrixGenerics_1.6.0
## [25] git2r_0.29.0 GenomeInfoDbData_1.2.4
## [27] polyclip_1.10-0 bit64_4.0.5
## [29] rprojroot_2.0.2 parallelly_1.30.0
## [31] vctrs_0.3.8 generics_0.1.1
## [33] xfun_0.29 BiocFileCache_2.2.1
## [35] R6_2.5.1 ggbeeswarm_0.6.0
## [37] spatstat.utils_2.3-0 bitops_1.0-7
## [39] cachem_1.0.6 gridGraphics_0.5-1
## [41] DelayedArray_0.16.1 assertthat_0.2.1
## [43] vroom_1.5.7 promises_1.2.0.1
## [45] BiocIO_1.4.0 scales_1.1.1
## [47] beeswarm_0.4.0 gtable_0.3.0
## [49] globals_0.14.0 goftest_1.2-3
## [51] rlang_0.4.12 splines_4.1.2
## [53] lazyeval_0.2.2 plyranges_1.14.0
## [55] abind_1.4-5 BiocManager_1.30.15
## [57] yaml_2.2.1 reshape2_1.4.4
## [59] httpuv_1.6.5 tools_4.1.2
## [61] ggplotify_0.1.0 ellipsis_0.3.2
## [63] jquerylib_0.1.4 ggridges_0.5.3
## [65] Rcpp_1.0.8 plyr_1.8.6
## [67] progress_1.2.2 zlibbioc_1.36.0
## [69] RCurl_1.98-1.5 prettyunits_1.1.1
## [71] deldir_1.0-6 rpart_4.1-15
## [73] pbapply_1.5-0 zoo_1.8-9
## [75] SeuratObject_4.0.4 SummarizedExperiment_1.20.0
## [77] cluster_2.1.2 data.table_1.14.2
## [79] scattermore_0.7 lmtest_0.9-39
## [81] RANN_2.6.1 fitdistrplus_1.1-6
## [83] matrixStats_0.61.0 hms_1.1.1
## [85] patchwork_1.1.1 mime_0.12
## [87] evaluate_0.14 xtable_1.8-4
## [89] XML_3.99-0.8 gridExtra_2.3
## [91] compiler_4.1.2 biomaRt_2.50.2
## [93] KernSmooth_2.23-20 crayon_1.4.2
## [95] htmltools_0.5.2 mgcv_1.8-38
## [97] later_1.3.0 tzdb_0.2.0
## [99] DBI_1.1.2 dbplyr_2.1.1
## [101] MASS_7.3-54 rappdirs_0.3.3
## [103] Matrix_1.3-4 cli_3.1.1
## [105] igraph_1.2.11 pkgconfig_2.0.3
## [107] GenomicAlignments_1.26.0 plotly_4.10.0
## [109] xml2_1.3.3 vipor_0.4.5
## [111] bslib_0.3.1 XVector_0.30.0
## [113] yulab.utils_0.0.4 digest_0.6.29
## [115] sctransform_0.3.3 RcppAnnoy_0.0.19
## [117] spatstat.data_2.1-2 Biostrings_2.58.0
## [119] rmarkdown_2.11 leiden_0.3.9
## [121] fastmatch_1.1-3 uwot_0.1.11
## [123] restfulr_0.0.13 curl_4.3.2
## [125] shiny_1.7.1 Rsamtools_2.6.0
## [127] rjson_0.2.21 nlme_3.1-153
## [129] lifecycle_1.0.1 jsonlite_1.7.3
## [131] fansi_1.0.2 pillar_1.6.4
## [133] lattice_0.20-45 KEGGREST_1.34.0
## [135] fastmap_1.1.0 httr_1.4.2
## [137] survival_3.2-13 spatstat_1.64-1
## [139] png_0.1-7 bit_4.0.4
## [141] stringi_1.7.6 sass_0.4.0
## [143] blob_1.2.2 memoise_2.0.1
## [145] renv_0.15.5 irlba_2.3.5
## [147] future.apply_1.8.1
The resources requested when this document was last rendered:
## #SBATCH --time=00:20:00
## #SBATCH --cpus-per-task=1
## #SBATCH --mem=10G
A project of the Kleinman Lab at McGill University, using the rr reproducible research template.