HGG-oncohistones project [source]
Configuration of project directory & analysis outputs:
Show full config
source(here("rr_helpers.R"))
# Set up outputs
message("Document index: ", doc_id)
## Document index: 00
# Specify where to save outputs
out <- here("output", doc_id); dir.create(out, recursive = TRUE)
figout <- here("figures", doc_id); dir.create(figout, recursive = TRUE)
cache <- paste0(readLines(here("include/project_root.txt")), basename(here()), "/", doc_id, "/")
Outputs and figures will be saved at these paths, relative to project root:
## public/output/00
## public/figures/00
Setting a random seed:
set.seed(100)
This document plots summaries of the samples included in this analysis as oncoprints as shown in Figure 1.
# Load libraries here
library(here)
library(tidyr)
library(dplyr)
library(readr)
library(glue)
library(tibble)
library(ggplot2)
library(cowplot)
source(here("include/style.R")) # contains palettes & plotting utils
ggplot2::theme_set(theme_min())
We'll generate an oncoprint for unique patient tumor samples, and patient-derived cell lines.
oncoprint_input_tumors <- read_tsv(here("data/metadata/oncoprint_input_tumors.tsv")) %>%
mutate(Molecular = factor(Molecular, levels = names(palette_molecular)),
Location = factor(Location, levels = names(palette_location))) %>%
arrange(desc(Type), Molecular, Location, GrowthFactorReceptor,
desc(scRNAseq), desc(scATACseq), desc(RNAseq), desc(H3K27ac), desc(H3K27me3), desc(H3K27me2)) %>%
mutate(ID_patient = factor(ID_patient, levels = .$ID_patient))
p0 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Material), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Tumor" = "azure2", "Cell line" = "gray80", "Both" = "gray50"),
guide = guide_legend(ncol = 2)) +
theme_min() + # the theme_row() theme is defined in include/style.R
theme_row()
p1 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Molecular), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_molecular, guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p2 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = GrowthFactorReceptor), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_gfr, na.value = "gray90", guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p3 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Location), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_location, na.value = "gray90", guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p4 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Age), colour = "white", width = 0.9, height = 0.9) +
scale_fill_gradientn(colours = brewer.pal(9, "YlGnBu"), na.value = "gray90") +
theme_min() +
theme_row()
p5 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = scRNAseq), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#2a9135", "Y" = "#6fc978", "-" = "gray90")) +
theme_min() +
theme_row()
p6 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = scATACseq), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#0ad1b7", "-" = "gray90")) +
theme_min() +
theme_row()
p7 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = RNAseq), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#2064f7", "Y" = "#6c88c4", "-" = "gray90")) +
theme_min() +
theme_row()
p8 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = H3K27ac), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#f72076", "Y" = "#c95583", "-" = "gray90")) +
theme_min() +
theme_row()
p9 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = H3K27me3), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#650ac7", "Y" = "#9363c7", "-" = "gray90")) +
theme_min() +
theme_row()
p10 <- oncoprint_input_tumors %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = H3K27me2), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#e04902", "Y" = "#d18460", "-" = "gray90")) +
theme(panel.border = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks = element_blank()) +
rotate_x()
cowplot::plot_grid(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,
align = "v", axis = "r", ncol = 1,
rel_heights = c(rep(0.08, 10), 0.2))
oncoprint_input_cl <- read_tsv(here("data/metadata/oncoprint_input_cl.tsv")) %>%
mutate(Molecular = factor(Molecular, levels = names(palette_molecular)),
Location = factor(Location, levels = names(palette_location))) %>%
arrange(desc(Type), Molecular, Location, GrowthFactorReceptor,
desc(scRNAseq), desc(scATACseq), desc(RNAseq), desc(H3K27ac), desc(H3K27me3), desc(H3K27me2)) %>%
mutate(ID_patient = factor(ID_patient, levels = .$ID_patient))
p0 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Material), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Tumor" = "azure2", "Cell line" = "gray80", "Both" = "gray50"),
guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p1 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Molecular), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_molecular, guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p2 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = GrowthFactorReceptor), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_gfr, na.value = "gray90", guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p3 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Location), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_location, na.value = "gray90", guide = guide_legend(ncol = 2)) +
theme_min() +
theme_row()
p4 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = Age), colour = "white", width = 0.9, height = 0.9) +
scale_fill_gradientn(colours = brewer.pal(9, "YlGnBu"), na.value = "gray90", limits = c(0, 20)) +
theme_min() +
theme_row()
p5 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = scRNAseq), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#2a9135", "Y" = "#6fc978", "-" = "gray90")) +
theme_min() +
theme_row()
p6 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = scATACseq), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#0ad1b7", "-" = "gray90")) +
theme_min() +
theme_row()
p7 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = RNAseq), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#2064f7", "Y" = "#6c88c4", "-" = "gray90")) +
theme_min() +
theme_row()
p8 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = H3K27ac), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#f72076", "Y" = "#c95583", "-" = "gray90")) +
theme_min() +
theme_row()
p9 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = H3K27me3), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#650ac7", "Y" = "#9363c7", "-" = "gray90")) +
theme_min() +
theme_row()
p10 <- oncoprint_input_cl %>%
ggplot(aes(x = ID_patient, y = 1)) +
geom_tile(aes(fill = H3K27me2), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = c("Y (new)" = "#e04902", "Y" = "#d18460", "-" = "gray90")) +
theme(panel.border = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks = element_blank()) +
rotate_x()
cowplot::plot_grid(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,
align = "v", axis = "r", ncol = 1,
rel_heights = c(rep(0.08, 10), 0.2))
This document was last rendered on:
## 2022-06-29 09:45:56
The git repository and last commit:
## Local: master /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public
## Remote: master @ origin (git@github.com:fungenomics/HGG-oncohistones.git)
## Head: [056f679] 2022-06-14: Add R-4 renv lockfile
The random seed was set with set.seed(100)
The R session info:
## Error in get(genname, envir = envir) : object 'testthat_print' not found
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 3.6.1 (2019-07-05)
## os Rocky Linux 8.5 (Green Obsidian)
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_CA.UTF-8
## ctype en_CA.UTF-8
## tz EST5EDT
## date 2022-06-29
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date lib source
## P assertthat 0.2.1 2019-03-21 [?] CRAN (R 3.6.1)
## P bslib 0.2.5 2021-05-12 [?] CRAN (R 3.6.1)
## P callr 3.7.0 2021-04-20 [?] CRAN (R 3.6.1)
## P cli 2.5.0 2021-04-26 [?] CRAN (R 3.6.1)
## P colorspace 2.0-1 2021-05-04 [?] CRAN (R 3.6.1)
## P cowplot * 1.1.1 2020-12-30 [?] CRAN (R 3.6.1)
## P crayon 1.4.1 2021-02-08 [?] CRAN (R 3.6.1)
## P DBI 1.1.1 2021-01-15 [?] CRAN (R 3.6.1)
## P desc 1.2.0 2018-05-01 [?] CRAN (R 3.6.1)
## P devtools 2.3.0 2020-04-10 [?] CRAN (R 3.6.1)
## P digest 0.6.27 2020-10-24 [?] CRAN (R 3.6.1)
## P dplyr * 1.0.6 2021-05-05 [?] CRAN (R 3.6.1)
## P ellipsis 0.3.2 2021-04-29 [?] CRAN (R 3.6.1)
## P evaluate 0.14 2019-05-28 [?] CRAN (R 3.6.1)
## P fansi 0.4.2 2021-01-15 [?] CRAN (R 3.6.1)
## P farver 2.1.0 2021-02-28 [?] CRAN (R 3.6.1)
## P fs 1.5.0 2020-07-31 [?] CRAN (R 3.6.1)
## P generics 0.1.0 2020-10-31 [?] CRAN (R 3.6.1)
## P ggplot2 * 3.3.3 2020-12-30 [?] CRAN (R 3.6.1)
## P git2r 0.27.1 2020-05-03 [?] CRAN (R 3.6.1)
## P glue * 1.4.2 2020-08-27 [?] CRAN (R 3.6.1)
## P gridExtra 2.3 2017-09-09 [?] CRAN (R 3.6.1)
## P gtable 0.3.0 2019-03-25 [?] CRAN (R 3.6.1)
## P here * 0.1 2017-05-28 [?] CRAN (R 3.6.1)
## P highr 0.9 2021-04-16 [?] CRAN (R 3.6.1)
## P hms 1.0.0 2021-01-13 [?] CRAN (R 3.6.1)
## P htmltools 0.5.1.1 2021-01-22 [?] CRAN (R 3.6.1)
## P jquerylib 0.1.4 2021-04-26 [?] CRAN (R 3.6.1)
## P jsonlite 1.7.2 2020-12-09 [?] CRAN (R 3.6.1)
## P knitr 1.33 2021-04-24 [?] CRAN (R 3.6.1)
## P labeling 0.4.2 2020-10-20 [?] CRAN (R 3.6.1)
## P lifecycle 1.0.0 2021-02-15 [?] CRAN (R 3.6.1)
## P magrittr * 2.0.1 2020-11-17 [?] CRAN (R 3.6.1)
## P memoise 1.1.0 2017-04-21 [?] CRAN (R 3.6.1)
## P munsell 0.5.0 2018-06-12 [?] CRAN (R 3.6.1)
## P pillar 1.6.0 2021-04-13 [?] CRAN (R 3.6.1)
## P pkgbuild 1.0.8 2020-05-07 [?] CRAN (R 3.6.1)
## P pkgconfig 2.0.3 2019-09-22 [?] CRAN (R 3.6.1)
## P pkgload 1.0.2 2018-10-29 [?] CRAN (R 3.6.1)
## P prettyunits 1.1.1 2020-01-24 [?] CRAN (R 3.6.1)
## P processx 3.5.2 2021-04-30 [?] CRAN (R 3.6.1)
## P ps 1.6.0 2021-02-28 [?] CRAN (R 3.6.1)
## P purrr 0.3.4 2020-04-17 [?] CRAN (R 3.6.1)
## P R6 2.5.0 2020-10-28 [?] CRAN (R 3.6.1)
## P RColorBrewer * 1.1-2 2014-12-07 [?] CRAN (R 3.6.1)
## P readr * 1.4.0 2020-10-05 [?] CRAN (R 3.6.1)
## P remotes 2.1.1 2020-02-15 [?] CRAN (R 3.6.1)
## renv 0.14.0 2021-07-21 [1] CRAN (R 3.6.1)
## P rlang 0.4.11 2021-04-30 [?] CRAN (R 3.6.1)
## P rmarkdown 2.8 2021-05-07 [?] CRAN (R 3.6.1)
## P rprojroot 2.0.2 2020-11-15 [?] CRAN (R 3.6.1)
## P rstudioapi 0.13 2020-11-12 [?] CRAN (R 3.6.1)
## P sass 0.4.0 2021-05-12 [?] CRAN (R 3.6.1)
## P scales 1.1.1 2020-05-11 [?] CRAN (R 3.6.1)
## P sessioninfo 1.1.1 2018-11-05 [?] CRAN (R 3.6.1)
## P stringi 1.6.1 2021-05-10 [?] CRAN (R 3.6.1)
## P stringr 1.4.0 2019-02-10 [?] CRAN (R 3.6.1)
## P testrmd 0.0.1.9000 2021-12-06 [?] Github (rmflight/testrmd@0735c20)
## P testthat 2.3.2 2020-03-02 [?] CRAN (R 3.6.1)
## P tibble * 3.1.1 2021-04-18 [?] CRAN (R 3.6.1)
## P tidyr * 1.1.3 2021-03-03 [?] CRAN (R 3.6.1)
## P tidyselect 1.1.1 2021-04-30 [?] CRAN (R 3.6.1)
## P usethis 1.6.1 2020-04-29 [?] CRAN (R 3.6.1)
## P utf8 1.2.1 2021-03-12 [?] CRAN (R 3.6.1)
## P vctrs 0.3.8 2021-04-29 [?] CRAN (R 3.6.1)
## P viridis * 0.5.1 2018-03-29 [?] CRAN (R 3.6.1)
## P viridisLite * 0.4.0 2021-04-13 [?] CRAN (R 3.6.1)
## P withr 2.4.2 2021-04-18 [?] CRAN (R 3.6.1)
## P xfun 0.22 2021-03-11 [?] CRAN (R 3.6.1)
## P yaml 2.2.1 2020-02-01 [?] CRAN (R 3.6.1)
##
## [1] /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public/renv/library/R-3.6/x86_64-pc-linux-gnu
## [2] /tmp/RtmpZIxQ4e/renv-system-library
##
## P ── Loaded and on-disk path mismatch.
The resources requested when this document was last rendered:
## #SBATCH --time=00:20:00
## #SBATCH --cpus-per-task=1
## #SBATCH --mem=10G
A project of the Kleinman Lab at McGill University, using the rr reproducible research template.