HGG-oncohistones project [source]
Configuration of project directory & analysis outputs:
Show full config
source(here("rr_helpers.R"))
# Set up outputs
message("Document index: ", doc_id)
## Document index: 05
# Specify where to save outputs
out <- here("output", doc_id); dir.create(out, recursive = TRUE)
figout <- here("figures", doc_id); dir.create(figout, recursive = TRUE)
cache <- paste0(readLines(here("include/project_root.txt")), basename(here()), "/", doc_id, "/")
Outputs and figures will be saved at these paths, relative to project root:
## public/output/05
## public/figures/05
Setting a random seed:
set.seed(100)
This document summarizes the extended mouse scRNAseq developmental atlas and generates the dendrograms over single-cell clusters for each brain region, as shown in Extended Data Figure 1.
# Load libraries here
library(here)
library(tidyr)
library(dplyr)
library(readr)
library(readxl)
library(glue)
library(purrr)
library(pvclust)
library(ggplot2)
library(ggrepel)
library(cowplot)
library(dendextend)
library(ggrastr)
library(Seurat)
source(here("include/style.R"))
source(here("code/functions/scRNAseq.R"))
ggplot2::theme_set(theme_min())
# set seed to reproduce earlier analysis
set.seed(23)
atlas_path <- read_lines(here("data/scRNAseq/references/mouse_atlas_extended/atlas_path_hydra.tsv"))
mean_expression_profile <- readRDS(file.path(atlas_path, "data/joint_mouse_extended/mean_expression_per_cluster.Rds"))
cluster_signatures <- readRDS(file.path(atlas_path, "data/joint_mouse_extended/joint_mouse_extended.signatures_ID_20210710.Rds"))
mouse_signatures <- cluster_signatures$mm_sym
Compute dendrograms based on correlation between mean transcriptome of each cluster. We use pvclust for constructing dendrograms.
# get the unique signature genes from mouse only
atlas_unique_genes_mm <- mouse_signatures %>% unlist %>% unique
f_signatures <- mouse_signatures[grepl("F-", names(mouse_signatures))] %>% unlist %>% unique
p_signatures <- mouse_signatures[grepl("P-.+_", names(mouse_signatures))] %>% unlist %>% unique
meanexp_mm_uniq <- mean_expression_profile[atlas_unique_genes_mm]
rownames(meanexp_mm_uniq) <- mean_expression_profile$ID_20210710
# subset the gene signatures to the clusters used in the dendrogram
meanexp_f_uniq <- meanexp_mm_uniq %>% filter(grepl("F-", rownames(meanexp_mm_uniq))) %>% .[f_signatures]
meanexp_p_uniq <- meanexp_mm_uniq %>% filter(grepl("P-.+_", rownames(meanexp_mm_uniq))) %>% .[p_signatures]
# transpose
meanexp_f_uniq <- as.data.frame(t(meanexp_f_uniq))
meanexp_p_uniq <- as.data.frame(t(meanexp_p_uniq))
# take correlations
cor_f <- cor(meanexp_f_uniq, meanexp_f_uniq, method = "spearman", use = "complete.obs")
cor_p <- cor(meanexp_p_uniq, meanexp_p_uniq, method = "spearman", use = "complete.obs")
# remove NAs
meanexp_f_uniq_no_NA <- meanexp_f_uniq
meanexp_f_uniq_no_NA[is.na(meanexp_f_uniq_no_NA)] <- 0
meanexp_p_uniq_no_NA <- meanexp_p_uniq
meanexp_p_uniq_no_NA[is.na(meanexp_p_uniq_no_NA)] <- 0
result_f <- pvclust(meanexp_f_uniq_no_NA, method.dist = spearman,
method.hclust = "complete", nboot = 100)
## Bootstrap (r = 0.5)... Done.
## Bootstrap (r = 0.6)... Done.
## Bootstrap (r = 0.7)... Done.
## Bootstrap (r = 0.8)... Done.
## Bootstrap (r = 0.9)... Done.
## Bootstrap (r = 1.0)... Done.
## Bootstrap (r = 1.1)... Done.
## Bootstrap (r = 1.2)... Done.
## Bootstrap (r = 1.3)... Done.
## Bootstrap (r = 1.4)... Done.
result_p <- pvclust(meanexp_p_uniq_no_NA, method.dist = spearman,
method.hclust = "complete", nboot = 100)
## Bootstrap (r = 0.5)... Done.
## Bootstrap (r = 0.6)... Done.
## Bootstrap (r = 0.7)... Done.
## Bootstrap (r = 0.8)... Done.
## Bootstrap (r = 0.9)... Done.
## Bootstrap (r = 1.0)... Done.
## Bootstrap (r = 1.1)... Done.
## Bootstrap (r = 1.2)... Done.
## Bootstrap (r = 1.3)... Done.
## Bootstrap (r = 1.4)... Done.
dend_f <- as.dendrogram(result_f)
dend_order_f <- colnames(cor_f)[order.dendrogram(dend_f)]
dend_p <- as.dendrogram(result_p)
dend_order_p <- colnames(cor_p)[order.dendrogram(dend_p)]
saveRDS(dend_order_f,
file = glue("{out}/dendrogram_order_joint_extended_forebrain.Rds"))
saveRDS(dend_order_p,
file = glue("{out}/dendrogram_order_joint_extended_pons.Rds"))
f_palette <- palette_joint_mouse_extended_full[dend_order_f]
p_palette <- palette_joint_mouse_extended_full[dend_order_p]
dend_f <- dend_f %>% set("labels_col", f_palette) %>% set("labels_cex", 0.3)
dend_p <- dend_p %>% set("labels_col", p_palette) %>% set("labels_cex", 0.3)
par(mar = c(20,2,2,2))
plot(dend_f)
plot(dend_p)
dev.off()
## null device
## 1
Per-sample data:
mouse_new_sample_qc <- read_xlsx(here("data/scRNAseq/references/mouse_atlas_extended/new_timepoints_stats.xlsx"))
mouse_sample_summary <- read_xlsx(here("data/metadata/2021-10-20_Omega_table-singlecell.xlsx")) %>%
filter(Diagnosis_1 == "Normal Mouse Brain") %>%
filter(!(Sample %in% c("PT_CT_0F", "fresh_mouse_brain_E18"))) %>%
left_join(mouse_new_sample_qc, by = c("Aliases" = "Alias")) %>%
rename(Alias = Aliases)
## New names:
## * `library yield (nM)` -> `library yield (nM)...33`
## * `copies/ul` -> `copies/ul...34`
## * `copies/ul` -> `copies/ul...35`
## * `library yield (nM)` -> `library yield (nM)...36`
# get QC stats after filtering
mouse_sample_qc_after_filt <- map_dfr(mouse_sample_summary$Alias,
~ data.table::fread(glue("{atlas_path}/data/{.x}/{.x}.metadata.tsv"), data.table = FALSE) %>%
group_by(alias) %>%
summarise_at(.vars = c("nCount_RNA", "nFeature_RNA"), .funs = mean)
)
mouse_sample_summary_with_qc <- mouse_sample_summary %>%
left_join(mouse_sample_qc_after_filt, by = c("Alias" = "alias")) %>%
select(Path, Original_sample = Sample, Alias, Protocol, Publication,
Kit = `kit version`, Species, Age, Location,
Starting_material = `Starting material`,
N_reads = `Number of reads`,
Reads_mapped_to_genome = `Reads mapped to genome`,
Reads_mapped_to_transcriptome = `Reads mapped to transcriptome`,
N_cells_estimated = `Estimated number of cells`,
N_cells_after_filtering = `number of cells post-filtering`,
Mean_UMIs_after_filtering = nCount_RNA,
Mean_N_genes_after_filtering = nFeature_RNA,
Min_cells_threshold = min_cells,
Min_N_genes_threshold = min_nGene,
Max_N_genes_threshold = max_nGene,
Min_UMIs_threshold = min_nUMI,
Max_UMIs_threshold = max_nUMI,
Number_of_PCs = `number of PCs`,
Clustering_resolution = `clustering resolution`) %>%
mutate(Publication = ifelse(is.na(Publication), "This study", Publication)) %>%
arrange(Publication, Age, Location)
mouse_sample_summary_with_qc %>%
rr_write_tsv(glue("{out}/TABLE_mouse_sample_info.tsv"),
"Sample info and QC stats for mouse brain samples")
## ...writing description of TABLE_mouse_sample_info.tsv to public/output/05/TABLE_mouse_sample_info.desc
Per-cluster data:
mouse_info_clusters <- data.table::fread(file.path(atlas_path, "data/metadata_extended/metadata_20210710_with_qc.tsv"), data.table = FALSE) %>%
left_join(mouse_sample_summary %>% select(Original_sample = Sample, Alias), by = "Alias") %>%
select(Sample, Original_sample, Alias, everything())
# sanity check that all the signatures are in the table
all(names(cluster_signatures$mm_sym) %in% mouse_info_clusters$Label)
## [1] TRUE
# now, add the signatures for each cluster to the table
cluster_signatures_df <- data.frame("Signature_mm_symbols" = map_chr(cluster_signatures$mm_sym, ~ glue_collapse(.x, sep = ",")),
"Signature_mm_ensembl" = map_chr(cluster_signatures$mm_ens, ~ glue_collapse(.x, sep = ",")),
"Signature_hg_symbols" = map_chr(cluster_signatures$hg_sym, ~ glue_collapse(.x, sep = ",")),
"Signature_hg_ensembl" = map_chr(cluster_signatures$hg_ens, ~ glue_collapse(.x, sep = ","))) %>%
tibble::rownames_to_column(var = "Label")
mouse_info_clusters_with_sigs <- mouse_info_clusters %>%
left_join(cluster_signatures_df, by = "Label")
# add cell class
# mouse_info_clusters_with_sigs_class <- mouse_info_clusters_with_sigs %>%
# summarize_cell_types("Level4_short") %>%
# rename(Cell_ontological_class = Type) %>%
# relocate(Cell_ontological_class, .before = "Level1_type")
# add dend order
mouse_info_clusters_with_sigs_class_dend <- mouse_info_clusters_with_sigs %>%
left_join(data.frame("Label" = dend_order_f) %>%
tibble::rowid_to_column(var = "Dendrogram_order_forebrain")) %>%
left_join(data.frame("Label" = dend_order_p) %>%
tibble::rowid_to_column(var = "Dendrogram_order_pons")) %>%
relocate(Dendrogram_order_forebrain, Dendrogram_order_pons, .after = Exclude)
## Joining, by = "Label"
## Joining, by = "Label"
mouse_info_clusters_with_sigs_class_dend %>%
rr_write_tsv(glue("{out}/TABLE_mouse_cluster_info.tsv"),
"Cluster info, QC stats, signatures, and dendrogram order for each mouse brain single-cell cluster")
## ...writing description of TABLE_mouse_cluster_info.tsv to public/output/05/TABLE_mouse_cluster_info.desc
Generate annotations for the dendrograms:
anno_dend_f <- mouse_info_clusters_with_sigs_class_dend %>%
select(Label, Dendrogram_order_forebrain, Timepoint) %>%
filter(!is.na(Dendrogram_order_forebrain)) %>%
arrange(Dendrogram_order_forebrain) %>%
mutate(Label = factor(Label, levels = .$Label))
anno_dend_f %>%
ggplot(aes(x = Label, y = 1)) +
geom_tile(aes(fill = Timepoint), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_timepoint) +
theme_min() +
theme(panel.border = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks = element_blank()) +
rotate_x()
anno_dend_p <- mouse_info_clusters_with_sigs_class_dend %>%
select(Label, Dendrogram_order_pons, Timepoint) %>%
filter(!is.na(Dendrogram_order_pons)) %>%
arrange(Dendrogram_order_pons) %>%
mutate(Label = factor(Label, levels = .$Label))
anno_dend_p %>%
ggplot(aes(x = Label, y = 1)) +
geom_tile(aes(fill = Timepoint), colour = "white", width = 0.9, height = 0.9) +
scale_fill_manual(values = palette_timepoint) +
theme_min() +
theme(panel.border = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks = element_blank()) +
rotate_x()
Plot the # cells per sample:
joint_mouse_meta <- readRDS(file.path(atlas_path,
"2020-10_analyze_extended_dataset/integration_joint_mouse_extended/output/metadata.Rds"))
joint_mouse_meta %>%
separate(Sample, into = c("Location2", "Timepoint"), sep = " ") %>%
group_by(Timepoint, Location) %>%
count() %>%
ggplot(aes(x = Timepoint, y = n)) +
geom_col(aes(fill = Timepoint), width = 0.5) +
facet_wrap(~ Location) +
geom_text(aes(label = n), angle = 90, size = 4, hjust = -0.05) +
scale_fill_manual(values = palette_timepoint) +
rotate_x() +
ylim(c(0, 13000))
This document was last rendered on:
## 2022-09-12 15:22:22
The git repository and last commit:
## Local: master /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public
## Remote: master @ origin (git@github.com:fungenomics/HGG-oncohistones.git)
## Head: [1a06382] 2022-09-08: Update comments, documentation, etc, based on lab feedback
The random seed was set with set.seed(100)
The R session info:
## Registered S3 method overwritten by 'cli':
## method from
## print.boxx spatstat
## Error in get(genname, envir = envir) : object 'testthat_print' not found
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 3.6.1 (2019-07-05)
## os Rocky Linux 8.6 (Green Obsidian)
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_CA.UTF-8
## ctype en_CA.UTF-8
## tz EST5EDT
## date 2022-09-12
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date lib source
## P abind 1.4-5 2016-07-21 [?] CRAN (R 3.6.1)
## P assertthat 0.2.1 2019-03-21 [?] CRAN (R 3.6.1)
## P beeswarm 0.3.1 2021-03-07 [?] CRAN (R 3.6.1)
## P bslib 0.2.5 2021-05-12 [?] CRAN (R 3.6.1)
## P callr 3.7.0 2021-04-20 [?] CRAN (R 3.6.1)
## P cellranger 1.1.0 2016-07-27 [?] CRAN (R 3.6.1)
## P cli 2.5.0 2021-04-26 [?] CRAN (R 3.6.1)
## P cluster 2.1.0 2019-06-19 [?] CRAN (R 3.6.1)
## P codetools 0.2-16 2018-12-24 [?] CRAN (R 3.6.1)
## P colorspace 2.0-1 2021-05-04 [?] CRAN (R 3.6.1)
## P cowplot * 1.1.1 2020-12-30 [?] CRAN (R 3.6.1)
## P crayon 1.4.1 2021-02-08 [?] CRAN (R 3.6.1)
## P data.table 1.14.0 2021-02-21 [?] CRAN (R 3.6.1)
## P DBI 1.1.1 2021-01-15 [?] CRAN (R 3.6.1)
## P deldir 0.2-10 2021-02-16 [?] CRAN (R 3.6.1)
## P dendextend * 1.14.0 2020-08-26 [?] CRAN (R 3.6.1)
## P desc 1.2.0 2018-05-01 [?] CRAN (R 3.6.1)
## P devtools 2.3.0 2020-04-10 [?] CRAN (R 3.6.1)
## P digest 0.6.27 2020-10-24 [?] CRAN (R 3.6.1)
## P dplyr * 1.0.6 2021-05-05 [?] CRAN (R 3.6.1)
## P ellipsis 0.3.2 2021-04-29 [?] CRAN (R 3.6.1)
## P evaluate 0.14 2019-05-28 [?] CRAN (R 3.6.1)
## P fansi 0.4.2 2021-01-15 [?] CRAN (R 3.6.1)
## P fastmap 1.1.0 2021-01-25 [?] CRAN (R 3.6.1)
## P fitdistrplus 1.1-3 2020-12-05 [?] CRAN (R 3.6.1)
## P fs 1.5.0 2020-07-31 [?] CRAN (R 3.6.1)
## P future 1.21.0 2020-12-10 [?] CRAN (R 3.6.1)
## P future.apply 1.7.0 2021-01-04 [?] CRAN (R 3.6.1)
## P generics 0.1.0 2020-10-31 [?] CRAN (R 3.6.1)
## P ggbeeswarm 0.6.0 2017-08-07 [?] CRAN (R 3.6.1)
## P ggplot2 * 3.3.3 2020-12-30 [?] CRAN (R 3.6.1)
## P ggrastr * 0.2.3 2021-03-01 [?] CRAN (R 3.6.1)
## P ggrepel * 0.9.1 2021-01-15 [?] CRAN (R 3.6.1)
## P ggridges 0.5.3 2021-01-08 [?] CRAN (R 3.6.1)
## P git2r 0.27.1 2020-05-03 [?] CRAN (R 3.6.1)
## P globals 0.14.0 2020-11-22 [?] CRAN (R 3.6.1)
## P glue * 1.4.2 2020-08-27 [?] CRAN (R 3.6.1)
## P goftest 1.2-2 2019-12-02 [?] CRAN (R 3.6.1)
## P gridExtra 2.3 2017-09-09 [?] CRAN (R 3.6.1)
## P gtable 0.3.0 2019-03-25 [?] CRAN (R 3.6.1)
## P here * 0.1 2017-05-28 [?] CRAN (R 3.6.1)
## P hms 1.0.0 2021-01-13 [?] CRAN (R 3.6.1)
## P htmltools 0.5.1.1 2021-01-22 [?] CRAN (R 3.6.1)
## P htmlwidgets 1.5.3 2020-12-10 [?] CRAN (R 3.6.1)
## P httpuv 1.6.1 2021-05-07 [?] CRAN (R 3.6.1)
## P httr 1.4.2 2020-07-20 [?] CRAN (R 3.6.1)
## P ica 1.0-2 2018-05-24 [?] CRAN (R 3.6.1)
## P igraph 1.2.6 2020-10-06 [?] CRAN (R 3.6.1)
## P irlba 2.3.3 2019-02-05 [?] CRAN (R 3.6.1)
## P jquerylib 0.1.4 2021-04-26 [?] CRAN (R 3.6.1)
## P jsonlite 1.7.2 2020-12-09 [?] CRAN (R 3.6.1)
## P KernSmooth 2.23-15 2015-06-29 [?] CRAN (R 3.6.1)
## P knitr 1.33 2021-04-24 [?] CRAN (R 3.6.1)
## P later 1.0.0 2019-10-04 [?] CRAN (R 3.6.1)
## P lattice 0.20-44 2021-05-02 [?] CRAN (R 3.6.1)
## P lazyeval 0.2.2 2019-03-15 [?] CRAN (R 3.6.1)
## P leiden 0.3.7 2021-01-26 [?] CRAN (R 3.6.1)
## P lifecycle 1.0.0 2021-02-15 [?] CRAN (R 3.6.1)
## P listenv 0.8.0 2019-12-05 [?] CRAN (R 3.6.1)
## P lmtest 0.9-38 2020-09-09 [?] CRAN (R 3.6.1)
## P magrittr * 2.0.1 2020-11-17 [?] CRAN (R 3.6.1)
## P MASS 7.3-54 2021-05-03 [?] CRAN (R 3.6.1)
## P Matrix 1.2-18 2019-11-27 [?] CRAN (R 3.6.1)
## P matrixStats 0.58.0 2021-01-29 [?] CRAN (R 3.6.1)
## P memoise 1.1.0 2017-04-21 [?] CRAN (R 3.6.1)
## P mgcv 1.8-35 2021-04-18 [?] CRAN (R 3.6.1)
## P mime 0.10 2021-02-13 [?] CRAN (R 3.6.1)
## P miniUI 0.1.1.1 2018-05-18 [?] CRAN (R 3.6.1)
## P munsell 0.5.0 2018-06-12 [?] CRAN (R 3.6.1)
## P nlme 3.1-152 2021-02-04 [?] CRAN (R 3.6.1)
## P parallelly 1.25.0 2021-04-30 [?] CRAN (R 3.6.1)
## P patchwork 1.1.1 2020-12-17 [?] CRAN (R 3.6.1)
## P pbapply 1.4-3 2020-08-18 [?] CRAN (R 3.6.1)
## P pillar 1.6.0 2021-04-13 [?] CRAN (R 3.6.1)
## P pkgbuild 1.0.8 2020-05-07 [?] CRAN (R 3.6.1)
## P pkgconfig 2.0.3 2019-09-22 [?] CRAN (R 3.6.1)
## P pkgload 1.0.2 2018-10-29 [?] CRAN (R 3.6.1)
## P plotly 4.9.3 2021-01-10 [?] CRAN (R 3.6.1)
## P plyr 1.8.6 2020-03-03 [?] CRAN (R 3.6.1)
## P png 0.1-7 2013-12-03 [?] CRAN (R 3.6.1)
## P polyclip 1.10-0 2019-03-14 [?] CRAN (R 3.6.1)
## P prettyunits 1.1.1 2020-01-24 [?] CRAN (R 3.6.1)
## P processx 3.5.2 2021-04-30 [?] CRAN (R 3.6.1)
## P promises 1.1.0 2019-10-04 [?] CRAN (R 3.6.1)
## P ps 1.6.0 2021-02-28 [?] CRAN (R 3.6.1)
## P purrr * 0.3.4 2020-04-17 [?] CRAN (R 3.6.1)
## P pvclust * 2.2-0 2019-11-19 [?] CRAN (R 3.6.1)
## P R6 2.5.0 2020-10-28 [?] CRAN (R 3.6.1)
## P RANN 2.6.1 2019-01-08 [?] CRAN (R 3.6.1)
## P RColorBrewer * 1.1-2 2014-12-07 [?] CRAN (R 3.6.1)
## P Rcpp 1.0.6 2021-01-15 [?] CRAN (R 3.6.1)
## P RcppAnnoy 0.0.18 2020-12-15 [?] CRAN (R 3.6.1)
## P readr * 1.4.0 2020-10-05 [?] CRAN (R 3.6.1)
## P readxl * 1.3.1 2019-03-13 [?] CRAN (R 3.6.1)
## P remotes 2.1.1 2020-02-15 [?] CRAN (R 3.6.1)
## renv 0.14.0 2021-07-21 [1] CRAN (R 3.6.1)
## P reshape2 1.4.4 2020-04-09 [?] CRAN (R 3.6.1)
## P reticulate 1.20 2021-05-03 [?] CRAN (R 3.6.1)
## P rlang 0.4.11 2021-04-30 [?] CRAN (R 3.6.1)
## P rmarkdown 2.8 2021-05-07 [?] CRAN (R 3.6.1)
## P ROCR 1.0-11 2020-05-02 [?] CRAN (R 3.6.1)
## P rpart 4.1-15 2019-04-12 [?] CRAN (R 3.6.1)
## P rprojroot 2.0.2 2020-11-15 [?] CRAN (R 3.6.1)
## P rsvd 1.0.3 2020-02-17 [?] CRAN (R 3.6.1)
## P Rtsne 0.15 2018-11-10 [?] CRAN (R 3.6.1)
## P sass 0.4.0 2021-05-12 [?] CRAN (R 3.6.1)
## P scales 1.1.1 2020-05-11 [?] CRAN (R 3.6.1)
## P sctransform 0.3.2 2020-12-16 [?] CRAN (R 3.6.1)
## P sessioninfo 1.1.1 2018-11-05 [?] CRAN (R 3.6.1)
## P Seurat * 3.2.1 2020-09-07 [?] CRAN (R 3.6.1)
## P shiny 1.6.0 2021-01-25 [?] CRAN (R 3.6.1)
## P spatstat 1.64-1 2020-05-12 [?] CRAN (R 3.6.1)
## P spatstat.data 2.1-0 2021-03-21 [?] CRAN (R 3.6.1)
## P spatstat.utils 2.1-0 2021-03-15 [?] CRAN (R 3.6.1)
## P stringi 1.6.1 2021-05-10 [?] CRAN (R 3.6.1)
## P stringr 1.4.0 2019-02-10 [?] CRAN (R 3.6.1)
## P survival 3.2-11 2021-04-26 [?] CRAN (R 3.6.1)
## P tensor 1.5 2012-05-05 [?] CRAN (R 3.6.1)
## P testrmd 0.0.1.9000 2021-12-06 [?] Github (rmflight/testrmd@0735c20)
## P testthat 2.3.2 2020-03-02 [?] CRAN (R 3.6.1)
## P tibble 3.1.1 2021-04-18 [?] CRAN (R 3.6.1)
## P tidyr * 1.1.3 2021-03-03 [?] CRAN (R 3.6.1)
## P tidyselect 1.1.1 2021-04-30 [?] CRAN (R 3.6.1)
## P usethis 1.6.1 2020-04-29 [?] CRAN (R 3.6.1)
## P utf8 1.2.1 2021-03-12 [?] CRAN (R 3.6.1)
## P uwot 0.1.10 2020-12-15 [?] CRAN (R 3.6.1)
## P vctrs 0.3.8 2021-04-29 [?] CRAN (R 3.6.1)
## P vipor 0.4.5 2017-03-22 [?] CRAN (R 3.6.1)
## P viridis * 0.5.1 2018-03-29 [?] CRAN (R 3.6.1)
## P viridisLite * 0.4.0 2021-04-13 [?] CRAN (R 3.6.1)
## P withr 2.4.2 2021-04-18 [?] CRAN (R 3.6.1)
## P xfun 0.22 2021-03-11 [?] CRAN (R 3.6.1)
## P xtable 1.8-4 2019-04-21 [?] CRAN (R 3.6.1)
## P yaml 2.2.1 2020-02-01 [?] CRAN (R 3.6.1)
## P zoo 1.8-9 2021-03-09 [?] CRAN (R 3.6.1)
##
## [1] /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public/renv/library/R-3.6/x86_64-pc-linux-gnu
## [2] /tmp/RtmppM1df5/renv-system-library
##
## P ── Loaded and on-disk path mismatch.
The resources requested when this document was last rendered:
## #SBATCH --time=01:00:00
## #SBATCH --cpus-per-task=1
## #SBATCH --mem=20G
A project of the Kleinman Lab at McGill University, using the rr reproducible research template.