HGG-oncohistones project [source]
Configuration of project directory & analysis outputs:
Show full config
source(here("rr_helpers.R"))
# Set up outputs
message("Document index: ", doc_id)
## Document index: 06
# Specify where to save outputs
out <- here("output", doc_id); dir.create(out, recursive = TRUE)
figout <- here("figures", doc_id); dir.create(figout, recursive = TRUE)
cache <- paste0(readLines(here("include/project_root.txt")), basename(here()), "/", doc_id, "/")
Outputs and figures will be saved at these paths, relative to project root:
## public/output/06
## public/figures/06
Setting a random seed:
set.seed(100)
This document contains analyses to understand the dependency of ACVR1 in K27M and especially H3.1K27M gliomas, and to interrogate the changes that result from knocking-out ACVR1 using CRISPR in ACVR1 mutant HGG cell lines, as shown in Figure 6.
# Load libraries here
library(here)
library(tidyr)
library(dplyr)
library(ggrepel)
library(readr)
library(readxl)
library(glue)
library(tibble)
library(ggplot2)
library(purrr)
library(stringr)
library(cowplot)
library(fgsea)
library(icytobox)
source(here("include/style.R")) # contains palettes and custom style elements
source(here("code/functions/RNAseq.R"))
source(here("code/functions/ssGSEA.R"))
ggplot2::theme_set(theme_min())
ddPCR assay of ID gene expression.
# load data
ddpcr <- suppressMessages(read_tsv(here("data/experimental/2022-03-10-ddPCR_ID_genes_@mhulswit.txt")))
# barplot
ddpcr_tidy <- ddpcr %>%
# remove xenografts
filter(!grepl("[Xx]eno", Sample)) %>%
gather(Stat, Value, matches("ID")) %>%
separate(Stat, into = c("Gene", "Stat"), sep = "_") %>%
spread(Stat, Value) %>%
separate(Sample, into = c("Cell_line", "CRISPR"), sep = "_") %>%
mutate(Condition = factor(Condition, levels = c("ACVR1 mutant", "ACVR1 KO")))
ddpcr_tidy %>%
rr_ggplot(aes(x = Condition, y = fold), plot_num = 1) +
geom_bar(aes(fill = Condition), stat = "identity", width = 0.5) +
geom_errorbar(aes(ymin = fold - sd, ymax = fold + sd), width = 0.25) +
scale_fill_manual(values = palette_acvr1) +
facet_grid(Cell_line ~ Gene, scales = "free_x", space = "free", drop = TRUE) +
ylim(c(0, 1.2)) +
rotate_x()
## ...writing source data of ggplot to public/figures/06/ddpcr_id_genes-1.source_data.tsv
[figure @ public/figures/06/ddpcr_id_genes...]
Data for clone formation assay for ACVR1 mutant and KO cell lines.
# load data
clono <- suppressMessages(read_tsv(here("data/experimental/clonogenic_assay_DIPG36_@am.txt")))
# define standard error to quantify uncertainty around the mean
se <- function(x) sqrt(var(x)/length(x))
# tidy & plot
clono_tidy <- clono %>%
set_colnames(c("ACVR1 mutant", "ACVR1 KO")) %>%
gather(Condition, N_clones) %>%
mutate(Condition = factor(Condition, levels = names(palette_acvr1))) %>%
filter(!is.na(N_clones))
clono_tidy %>%
group_by(Condition) %>%
summarize(N_clones_mean = mean(N_clones),
N_clones_se = se(N_clones)) %>%
rr_ggplot(aes(x = Condition, y = N_clones_mean), plot_num = 1) +
geom_bar(aes(fill = Condition), stat = "identity", width = 0.5) +
geom_errorbar(aes(ymin = N_clones_mean - N_clones_se, ymax = N_clones_mean + N_clones_se), width = 0.25) +
geom_jitter(data = clono_tidy, aes(x = Condition, y = N_clones), width = 0.2, size = 1) +
scale_fill_manual(values = palette_acvr1) +
ylim(c(0, 150))
## ...writing source data of ggplot to public/figures/06/clonogenesis-1.source_data.tsv
t.test(clono$Parental, clono$`ACVR1 KO`, alternative = "two.sided", var.equal = TRUE)
##
## Two Sample t-test
##
## data: clono$Parental and clono$`ACVR1 KO`
## t = 2.7602, df = 7, p-value = 0.02809
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 6.855717 88.810950
## sample estimates:
## mean of x mean of y
## 116.50000 68.66667
[figure @ public/figures/06/clonogenesis...]
Doubling times of H3.1 and H3.3K27M cell lines.
# load data
doubling_H3.1_vs_H3.3 <- suppressMessages(read_tsv(here("data/experimental/doubling_time_H3.3_vs_H3.1_@am.txt")))
# tidy & plot
doubling_H3.1_vs_H3.3_tidy <- doubling_H3.1_vs_H3.3 %>%
set_colnames(c("DIPGXIII", "HSJ-019", "DIPG36", "DIPGIV")) %>%
gather(Cell_line, Doubling_time) %>%
filter(!is.na(Doubling_time))
# use standard deviation to assesss variability of the measurements
doubling_H3.1_vs_H3.3_tidy %>%
group_by(Cell_line) %>%
summarize(Doubling_mean = mean(Doubling_time),
Doubling_sd = sd(Doubling_time)) %>%
rr_ggplot(aes(x = Cell_line, y = Doubling_mean), plot_num = 1) +
geom_bar(aes(fill = Cell_line), stat = "identity", width = 0.5) +
geom_errorbar(aes(ymin = Doubling_mean - Doubling_sd, ymax = Doubling_mean + Doubling_sd), width = 0.25) +
geom_jitter(data = doubling_H3.1_vs_H3.3_tidy, aes(x = Cell_line, y = Doubling_time), width = 0.1, size = 1) +
scale_fill_manual(values = c("DIPG36" = "orange", "DIPGIV" = "orange", "DIPGXIII" = "red3", "HSJ-019" = "red3")) +
no_legend()
## ...writing source data of ggplot to public/figures/06/doubling_H3.1_vs_H3.3-1.source_data.tsv
[figure @ public/figures/06/doubling_H3.1_vs_H3.3...]
# load data
doubling_ACVR1 <- suppressMessages(read_tsv(here("data/experimental/doubling_time_DIPGIV_ACVR1mut_vs_KO_@am.txt")))
# tidy & plot
doubling_ACVR1_tidy <- doubling_ACVR1 %>%
set_colnames(c("ACVR1 mutant", "ACVR1 KO")) %>%
gather(Condition, Doubling_time) %>%
mutate(Condition = factor(Condition, levels = names(palette_acvr1))) %>%
filter(!is.na(Condition))
doubling_ACVR1_tidy %>%
group_by(Condition) %>%
summarize(Doubling_mean = mean(Doubling_time),
Doubling_sd = sd(Doubling_time)) %>%
rr_ggplot(aes(x = Condition, y = Doubling_mean), plot_num = 1) +
geom_bar(aes(fill = Condition), stat = "identity", width = 0.5) +
geom_errorbar(aes(ymin = Doubling_mean - Doubling_sd, ymax = Doubling_mean + Doubling_sd), width = 0.25) +
geom_jitter(data = doubling_ACVR1_tidy, aes(x = Condition, y = Doubling_time), width = 0.1, size = 1) +
scale_fill_manual(values = palette_acvr1) +
no_legend() +
ylim(c(0, 50))
## ...writing source data of ggplot to public/figures/06/doubling_ACVR1-1.source_data.tsv
[figure @ public/figures/06/doubling_ACVR1...]
This document was last rendered on:
## 2022-09-12 15:23:43
The git repository and last commit:
## Local: master /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public
## Remote: master @ origin (git@github.com:fungenomics/HGG-oncohistones.git)
## Head: [1a06382] 2022-09-08: Update comments, documentation, etc, based on lab feedback
The random seed was set with set.seed(100)
The R session info:
## Error in get(genname, envir = envir) : object 'testthat_print' not found
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 3.6.1 (2019-07-05)
## os Rocky Linux 8.6 (Green Obsidian)
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_CA.UTF-8
## ctype en_CA.UTF-8
## tz EST5EDT
## date 2022-09-12
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date lib
## P abind 1.4-5 2016-07-21 [?]
## P assertthat 0.2.1 2019-03-21 [?]
## P BiocParallel 1.20.1 2019-12-21 [?]
## P bslib 0.2.5 2021-05-12 [?]
## P callr 3.7.0 2021-04-20 [?]
## P cellranger 1.1.0 2016-07-27 [?]
## P cli 2.5.0 2021-04-26 [?]
## P cluster 2.1.0 2019-06-19 [?]
## P codetools 0.2-16 2018-12-24 [?]
## P colorspace 2.0-1 2021-05-04 [?]
## P cowplot * 1.1.1 2020-12-30 [?]
## P crayon 1.4.1 2021-02-08 [?]
## P data.table 1.14.0 2021-02-21 [?]
## P DBI 1.1.1 2021-01-15 [?]
## P deldir 0.2-10 2021-02-16 [?]
## P desc 1.2.0 2018-05-01 [?]
## P devtools 2.3.0 2020-04-10 [?]
## P digest 0.6.27 2020-10-24 [?]
## P dplyr * 1.0.6 2021-05-05 [?]
## P ellipsis 0.3.2 2021-04-29 [?]
## P evaluate 0.14 2019-05-28 [?]
## P fansi 0.4.2 2021-01-15 [?]
## P farver 2.1.0 2021-02-28 [?]
## P fastmap 1.1.0 2021-01-25 [?]
## P fastmatch 1.1-0 2017-01-28 [?]
## P fgsea * 1.12.0 2019-10-29 [?]
## P fitdistrplus 1.1-3 2020-12-05 [?]
## P fs 1.5.0 2020-07-31 [?]
## P future 1.21.0 2020-12-10 [?]
## P future.apply 1.7.0 2021-01-04 [?]
## P generics 0.1.0 2020-10-31 [?]
## P ggplot2 * 3.3.3 2020-12-30 [?]
## P ggrepel * 0.9.1 2021-01-15 [?]
## P ggridges 0.5.3 2021-01-08 [?]
## P git2r 0.27.1 2020-05-03 [?]
## P globals 0.14.0 2020-11-22 [?]
## P glue * 1.4.2 2020-08-27 [?]
## P goftest 1.2-2 2019-12-02 [?]
## P gridExtra 2.3 2017-09-09 [?]
## P gtable 0.3.0 2019-03-25 [?]
## P here * 0.1 2017-05-28 [?]
## P highr 0.9 2021-04-16 [?]
## P hms 1.0.0 2021-01-13 [?]
## P htmltools 0.5.1.1 2021-01-22 [?]
## P htmlwidgets 1.5.3 2020-12-10 [?]
## P httpuv 1.6.1 2021-05-07 [?]
## P httr 1.4.2 2020-07-20 [?]
## P ica 1.0-2 2018-05-24 [?]
## P icytobox * 1.0.1 2021-12-07 [?]
## P igraph 1.2.6 2020-10-06 [?]
## P irlba 2.3.3 2019-02-05 [?]
## P jquerylib 0.1.4 2021-04-26 [?]
## P jsonlite 1.7.2 2020-12-09 [?]
## P KernSmooth 2.23-15 2015-06-29 [?]
## P knitr 1.33 2021-04-24 [?]
## P labeling 0.4.2 2020-10-20 [?]
## P later 1.0.0 2019-10-04 [?]
## P lattice 0.20-44 2021-05-02 [?]
## P lazyeval 0.2.2 2019-03-15 [?]
## P leiden 0.3.7 2021-01-26 [?]
## P lifecycle 1.0.0 2021-02-15 [?]
## P listenv 0.8.0 2019-12-05 [?]
## P lmtest 0.9-38 2020-09-09 [?]
## P magrittr * 2.0.1 2020-11-17 [?]
## P MASS 7.3-54 2021-05-03 [?]
## P Matrix 1.2-18 2019-11-27 [?]
## P matrixStats 0.58.0 2021-01-29 [?]
## P memoise 1.1.0 2017-04-21 [?]
## P mgcv 1.8-35 2021-04-18 [?]
## P mime 0.10 2021-02-13 [?]
## P miniUI 0.1.1.1 2018-05-18 [?]
## P munsell 0.5.0 2018-06-12 [?]
## P nlme 3.1-152 2021-02-04 [?]
## P parallelly 1.25.0 2021-04-30 [?]
## P patchwork 1.1.1 2020-12-17 [?]
## P pbapply * 1.4-3 2020-08-18 [?]
## P pillar 1.6.0 2021-04-13 [?]
## P pkgbuild 1.0.8 2020-05-07 [?]
## P pkgconfig 2.0.3 2019-09-22 [?]
## P pkgload 1.0.2 2018-10-29 [?]
## P plotly 4.9.3 2021-01-10 [?]
## P plyr 1.8.6 2020-03-03 [?]
## P png 0.1-7 2013-12-03 [?]
## P polyclip 1.10-0 2019-03-14 [?]
## P prettyunits 1.1.1 2020-01-24 [?]
## P processx 3.5.2 2021-04-30 [?]
## P promises 1.1.0 2019-10-04 [?]
## P ps 1.6.0 2021-02-28 [?]
## P purrr * 0.3.4 2020-04-17 [?]
## P R6 2.5.0 2020-10-28 [?]
## P RANN 2.6.1 2019-01-08 [?]
## P RColorBrewer * 1.1-2 2014-12-07 [?]
## P Rcpp * 1.0.6 2021-01-15 [?]
## P RcppAnnoy 0.0.18 2020-12-15 [?]
## P readr * 1.4.0 2020-10-05 [?]
## P readxl * 1.3.1 2019-03-13 [?]
## P remotes 2.1.1 2020-02-15 [?]
## renv 0.14.0 2021-07-21 [1]
## P reshape2 1.4.4 2020-04-09 [?]
## P reticulate 1.20 2021-05-03 [?]
## P rlang 0.4.11 2021-04-30 [?]
## P rmarkdown 2.8 2021-05-07 [?]
## P ROCR 1.0-11 2020-05-02 [?]
## P rpart 4.1-15 2019-04-12 [?]
## P rprojroot 2.0.2 2020-11-15 [?]
## P rstudioapi 0.13 2020-11-12 [?]
## P rsvd 1.0.3 2020-02-17 [?]
## P Rtsne 0.15 2018-11-10 [?]
## P sass 0.4.0 2021-05-12 [?]
## P scales 1.1.1 2020-05-11 [?]
## P sctransform 0.3.2 2020-12-16 [?]
## P sessioninfo 1.1.1 2018-11-05 [?]
## P Seurat 3.2.1 2020-09-07 [?]
## P shiny 1.6.0 2021-01-25 [?]
## P spatstat 1.64-1 2020-05-12 [?]
## P spatstat.data 2.1-0 2021-03-21 [?]
## P spatstat.utils 2.1-0 2021-03-15 [?]
## P stringi 1.6.1 2021-05-10 [?]
## P stringr * 1.4.0 2019-02-10 [?]
## P survival 3.2-11 2021-04-26 [?]
## P tensor 1.5 2012-05-05 [?]
## P testrmd 0.0.1.9000 2021-12-06 [?]
## P testthat 2.3.2 2020-03-02 [?]
## P tibble * 3.1.1 2021-04-18 [?]
## P tidyr * 1.1.3 2021-03-03 [?]
## P tidyselect 1.1.1 2021-04-30 [?]
## P usethis 1.6.1 2020-04-29 [?]
## P utf8 1.2.1 2021-03-12 [?]
## P uwot 0.1.10 2020-12-15 [?]
## P vctrs 0.3.8 2021-04-29 [?]
## P viridis * 0.5.1 2018-03-29 [?]
## P viridisLite * 0.4.0 2021-04-13 [?]
## P withr 2.4.2 2021-04-18 [?]
## P xfun 0.22 2021-03-11 [?]
## P xtable 1.8-4 2019-04-21 [?]
## P yaml 2.2.1 2020-02-01 [?]
## P zoo 1.8-9 2021-03-09 [?]
## source
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Github (fungenomics/icytobox@730e8b8)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Github (rmflight/testrmd@0735c20)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
##
## [1] /lustre06/project/6004736/sjessa/from_narval/HGG-oncohistones/public/renv/library/R-3.6/x86_64-pc-linux-gnu
## [2] /tmp/RtmpYBfkw4/renv-system-library
##
## P ── Loaded and on-disk path mismatch.
The resources requested when this document was last rendered:
## #SBATCH --time=01:00:00
## #SBATCH --cpus-per-task=1
## #SBATCH --mem=20G
A project of the Kleinman Lab at McGill University, using the rr reproducible research template.