NB-FOXR2 project [source]
Configuration of project directory & analysis outputs:
Show full config
source(here("rr_helpers.R"))
# Set up outputs
message("Document index: ", doc_id)
## Document index: 08
# Specify where to save outputs
out <- here("output", doc_id); dir.create(out, recursive = TRUE)
figout <- here("figures", doc_id, "/")
cache <- paste0("/project/kleinman/bhavyaa.chandarana/cache/NB-FOXR2/public/", doc_id, "/")
The root directory of this project is:
## /project/kleinman/bhavyaa.chandarana/from_hydra/2023-05-NB-FOXR2/public
Outputs and figures will be saved at these paths, relative to project root:
## public/output/08
## public/figures/08//
Setting a random seed:
set.seed(100)
This document compares NB-FOXR2 with extracranial neuroblastoma samples stratified by stage and FOXR2 expression.
library(here)
library(magrittr)
library(tidyr)
library(dplyr)
library(readr)
library(readxl)
library(stringr)
library(glue)
library(purrr)
library(ggplot2)
library(ggrepel)
library(tibble)
library(cowplot)
library(Seurat)
library(data.table)
library(MetBrewer)
library(dendextend)
library(readxl)
library(GSVA)
library(clusterProfiler)
library(org.Hs.eg.db)
library(GO.db)
library(ComplexHeatmap)
source(here("include/style.R"))
source(here("code/functions/RNAseq.R"))
source(here("code/functions/scRNAseq.R"))
source(here("code/functions/ssGSEA.R"))
ggplot2::theme_set(theme_min())
square_theme <- theme(aspect.ratio = 1)
large_text <- theme(text = element_text(size = 15))
conflicted::conflicts_prefer(dplyr::select)
conflicted::conflicts_prefer(dplyr::filter)
conflicted::conflicts_prefer(dplyr::first)
conflicted::conflicts_prefer(dplyr::last)
conflicted::conflicts_prefer(dplyr::combine)
conflicted::conflicts_prefer(dplyr::intersect)
conflicted::conflicts_prefer(base::setdiff)
conflicted::conflicts_prefer(clusterProfiler::slice)
conflicted::conflicts_prefer(dplyr::rename)
conflicted::conflicts_prefer(dplyr::desc)
conflicted::conflicts_prefer(dplyr::filter)
Publication: Gartlgruber et al. Nature Cancer 2021
This data was downloaded from a Shiny app provided by the authors of the study.
Data was provided as un-normalized bulk counts and per-tumor metadata.
Load DESeq normalized counts produced in in R markdown document 03
for plotting gene expression.
# Load files and remove unused ones to save space
load(here("output/03/Gartlgruber_et_al_counts.Rda"))
rm(ecnb_counts_norm)
rm(ecnb_counts_vst)
Here, we label each tumor as FOXR2 positive or negative in per-tumor metadata based on normalized expression of FOXR2. We consider tumors with FOXR2 DESeq normalized expression > 2 to be FOXR2 positive.
# Set threshold of FOXR2+ expression used throughout this document
threshold <- 2
ecnb_foxr2_counts <- ecnb_counts_tidy %>%
filter(gene_symbol == "FOXR2")
foxr2_pos_samples <- ecnb_foxr2_counts %>%
filter(gene_expression > threshold) %>%
.$sample
ecnb_foxr2_counts <- ecnb_foxr2_counts %>% mutate(FOXR2_positive = case_when(sample %in% foxr2_pos_samples ~ "Y",
T ~ "N"))
# Print the number of FOXR2 positive and negative samples
ecnb_foxr2_counts %>% count(FOXR2_positive, sort = F)
# Print the number of FOXR2 positive and negative samples in each tumor stage
ecnb_foxr2_counts %>% count(Stage, FOXR2_positive, sort = F)
ecnb_counts_tidy <- ecnb_counts_tidy %>%
mutate(FOXR2_positive = case_when(sample %in% foxr2_pos_samples ~ "FOXR2+",
T ~ "FOXR2-"))
Downloaded and processed by Steven Hébert in April 2024.
They were downloaded as count matrices from the public Genomic 686 Data Commons (GDC) cancer portal (https://portal.gdc.cancer.gov/) using the Cohort Builder, with options:
project = TARGET-346 NBL
Experimental Strategy = RNA-seq
Access = open
Patients were subsetted to Risk = HR (high risk) and Stage = 3 or 4 (not 4S). This resulted in a total of 128 patient samples.
Load patient sample metadata.
# Load, replace the empty value '-- with NA values and remove all-NA columns,
# and rename id column to Sample
target_meta <- data.table::fread(here("data/RNAseq/external_data/TARGET_ECNB/clinical.tsv")) %>%
apply(2,
function(col) {
gsub(col, pattern = "'--", replacement = as.character(NA))
}
) %>%
as.data.frame() %>%
select_if(~ !all(is.na(.))) %>%
dplyr::rename(Sample = case_submitter_id)
Load DESeq-normalized counts (for plotting gene expression).
# load normalized counts
target_norm <- here("data/RNAseq/external_data/TARGET_ECNB/counts_ensembl_common/GENCODEv36.norm.tsv.gz") %>%
read.table(header = T, row.names = 1, check.names = F, sep = "\t")
# Display first 5 row/col to check
target_norm[1:5, 1:5]
Based on threshold = 2.
# DESeq norm expression threshold used for FOXR2 +/-
threshold <- 2
target_counts_tidy <- target_norm %>%
as.data.frame() %>%
rownames_to_column("Gene") %>%
separate(col = "Gene", sep = ":", into = c("ENS", "gene_symbol")) %>%
pivot_longer(cols = -c("ENS", "gene_symbol"), names_to = "ID", values_to = "gene_expression")
foxr2_pos_samples_target <- target_counts_tidy %>%
filter(gene_symbol == "FOXR2") %>%
filter(gene_expression > threshold) %>%
.$ID
target_meta_foxr2 <- target_counts_tidy %>%
mutate(FOXR2_positive = case_when(ID %in% foxr2_pos_samples_target ~ "Y",
T ~ "N")) %>%
select(ID, FOXR2_positive) %>% distinct
Stage 4, high-risk tumors only. (Samples with NA in either Risk or Stage metadata columns are removed.)
tum_interest <- ecnb_counts_tidy %>%
filter(Risk == "HR") %>%
filter(Stage == "4") %>%
filter(gene_symbol %in% c("FOXR2", "LHX6", "DLX5", "DLX6"))
# DLX5
foxr2_dlx5 <- tum_interest %>%
filter(gene_symbol %in% c("FOXR2", "DLX5")) %>%
pivot_wider(names_from = "gene_symbol",
values_from = "gene_expression",
id_cols = c("sample", "FOXR2_positive"))
(cor_foxr2_dlx5 <- cor(foxr2_dlx5$FOXR2, foxr2_dlx5$DLX5, method = "pearson"))
## [1] 0.1477744
(sig_dlx5 <- wilcox.test(foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX5,
foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX5))
##
## Wilcoxon rank sum test with continuity correction
##
## data: foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX5 and foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX5
## W = 3549, p-value = 0.8924
## alternative hypothesis: true location shift is not equal to 0
dlx5_scatter <- foxr2_dlx5 %>%
ggplot(aes(x = FOXR2, y = DLX5, alpha = 0.2)) +
geom_point(alpha = 0.5, size = 3) +
ggtitle("DLX5 - EC-NB stage 4") +
annotate("text", label = glue("r == {round(cor_foxr2_dlx5,4)}"),
x = 470, y = 4000, parse = T)
dlx5_vln <- foxr2_dlx5 %>%
ggplot(aes(x = FOXR2_positive, y = DLX5, fill = FOXR2_positive)) +
geom_violin(scale = "width") +
ggtitle("DLX5 - EC-NB stage 4") +
no_legend() + scale_y_log10() +
stat_summary(fun.y=median, geom="crossbar", size=1,
color="black", aes(width = 0.3)) +
annotate("text", label = glue("p == {round(sig_dlx5$p.value,4)}"),
x = 2, y = 4000, parse = T)
# DLX6
foxr2_dlx6 <- tum_interest %>%
filter(gene_symbol %in% c("FOXR2", "DLX6")) %>%
pivot_wider(names_from = "gene_symbol",
values_from = "gene_expression",
id_cols = c("sample", "FOXR2_positive"))
(cor_foxr2_dlx6 <- cor(foxr2_dlx6$FOXR2, foxr2_dlx6$DLX6, method = "pearson"))
## [1] 0.2062904
(sig_dlx6 <- wilcox.test(foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX6,
foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX6))
##
## Wilcoxon rank sum test with continuity correction
##
## data: foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX6 and foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX6
## W = 3461.5, p-value = 0.6946
## alternative hypothesis: true location shift is not equal to 0
dlx6_scatter <- foxr2_dlx6 %>%
ggplot(aes(x = FOXR2, y = DLX6, alpha = 0.2)) +
geom_point(alpha = 0.5, size = 3) + ggtitle("DLX6 - EC-NB stage 4") +
annotate("text", label = glue("r == {round(cor_foxr2_dlx6,4)}"),
x = 470, y = 3000, parse = T)
dlx6_vln <- foxr2_dlx6 %>%
ggplot(aes(x = FOXR2_positive, y = DLX6, fill = FOXR2_positive)) +
geom_violin(scale = "width") +
ggtitle("DLX6 - EC-NB stage 4") +
no_legend() + scale_y_log10() +
stat_summary(fun.y=median, geom="crossbar", size=1,
color="black", aes(width = 0.3)) +
annotate("text", label = glue("p == {round(sig_dlx6$p.value,4)}"),
x = 2, y = 4000, parse = T)
# LHX6
foxr2_lhx6 <- tum_interest %>%
filter(gene_symbol %in% c("FOXR2", "LHX6")) %>%
pivot_wider(names_from = "gene_symbol",
values_from = "gene_expression",
id_cols = c("sample", "FOXR2_positive"))
(cor_foxr2_lhx6 <- cor(foxr2_lhx6$FOXR2, foxr2_lhx6$LHX6, method = "pearson"))
## [1] -0.04012718
(sig_lhx6 <- wilcox.test(foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$LHX6,
foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$LHX6))
##
## Wilcoxon rank sum test with continuity correction
##
## data: foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$LHX6 and foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$LHX6
## W = 3546, p-value = 0.8854
## alternative hypothesis: true location shift is not equal to 0
lhx6_scatter <- foxr2_lhx6 %>%
ggplot(aes(x = FOXR2, y = LHX6, alpha = 0.2)) +
geom_point(alpha = 0.5, size = 3) +
ggtitle("LHX6 - EC-NB stage 4") +
annotate("text", label = glue("r == {round(cor_foxr2_lhx6,4)}"),
x = 470, y = 600, parse = T)
lhx6_vln <- foxr2_lhx6 %>%
ggplot(aes(x = FOXR2_positive, y = LHX6, fill = FOXR2_positive)) +
geom_violin(scale = "width") +
ggtitle("LHX6 - EC-NB stage 4") +
no_legend() +
stat_summary(fun.y=median, geom="crossbar", size=1,
color="black", aes(width = 0.3)) +
annotate("text", label = glue("p == {round(sig_lhx6$p.value,4)}"),
x = 2, y = 600, parse = T)
cowplot::plot_grid(dlx5_scatter, dlx5_vln,
dlx6_scatter, dlx6_vln,
lhx6_scatter, lhx6_vln,
nrow = 1, align = "hv")
FOXR2 + threshold: DESEq normalized value "2".
tum_interest <- target_counts_tidy %>%
filter(gene_symbol %in% c("FOXR2", "LHX6", "DLX5", "DLX6")) %>%
left_join(., target_meta_foxr2, by = "ID") %>%
dplyr::rename("sample" = "ID") %>%
mutate(FOXR2_positive = case_when(FOXR2_positive == "Y" ~ "FOXR2+",
FOXR2_positive == "N" ~ "FOXR2-",
TRUE ~ NA))
# DLX5
foxr2_dlx5 <- tum_interest %>%
filter(gene_symbol %in% c("FOXR2", "DLX5")) %>%
pivot_wider(names_from = "gene_symbol",
values_from = "gene_expression",
id_cols = c("sample", "FOXR2_positive"))
(cor_foxr2_dlx5 <- cor(foxr2_dlx5$FOXR2, foxr2_dlx5$DLX5, method = "pearson"))
## [1] 0.07350015
(sig_dlx5 <- wilcox.test(foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX5,
foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX5))
##
## Wilcoxon rank sum test with continuity correction
##
## data: foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX5 and foxr2_dlx5 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX5
## W = 1816, p-value = 0.2406
## alternative hypothesis: true location shift is not equal to 0
dlx5_scatter <- foxr2_dlx5 %>%
ggplot(aes(x = FOXR2, y = DLX5, alpha = 0.2)) +
geom_point(alpha = 0.5, size = 3) +
ggtitle("DLX5 - EC-NB stage 4") +
annotate("text", label = glue("r == {round(cor_foxr2_dlx5,4)}"),
x = 900, y = 5500, parse = T)
dlx5_vln <- foxr2_dlx5 %>%
ggplot(aes(x = FOXR2_positive, y = DLX5, fill = FOXR2_positive)) +
geom_violin(scale = "width") +
ggtitle("DLX5 - EC-NB stage 4") +
no_legend() + scale_y_log10() +
stat_summary(fun.y=median, geom="crossbar", size=1,
color="black", aes(width = 0.3)) +
annotate("text", label = glue("p == {round(sig_dlx5$p.value,4)}"),
x = 2, y = 5500, parse = T)
# DLX6
foxr2_dlx6 <- tum_interest %>%
filter(gene_symbol %in% c("FOXR2", "DLX6")) %>%
pivot_wider(names_from = "gene_symbol",
values_from = "gene_expression",
id_cols = c("sample", "FOXR2_positive"))
(cor_foxr2_dlx6 <- cor(foxr2_dlx6$FOXR2, foxr2_dlx6$DLX6, method = "pearson"))
## [1] 0.1009971
(sig_dlx6 <- wilcox.test(foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX6,
foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX6))
##
## Wilcoxon rank sum test with continuity correction
##
## data: foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$DLX6 and foxr2_dlx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$DLX6
## W = 1823.5, p-value = 0.2248
## alternative hypothesis: true location shift is not equal to 0
dlx6_scatter <- foxr2_dlx6 %>%
ggplot(aes(x = FOXR2, y = DLX6, alpha = 0.2)) +
geom_point(alpha = 0.5, size = 3) + ggtitle("DLX6 - EC-NB stage 4") +
annotate("text", label = glue("r == {round(cor_foxr2_dlx6,4)}"),
x = 900, y = 3500, parse = T)
dlx6_vln <- foxr2_dlx6 %>%
ggplot(aes(x = FOXR2_positive, y = DLX6, fill = FOXR2_positive)) +
geom_violin(scale = "width") +
ggtitle("DLX6 - EC-NB stage 4") +
no_legend() + scale_y_log10() +
stat_summary(fun.y=median, geom="crossbar", size=1,
color="black", aes(width = 0.3)) +
annotate("text", label = glue("p == {round(sig_dlx6$p.value,4)}"),
x = 2, y = 3500, parse = T)
# LHX6
foxr2_lhx6 <- tum_interest %>%
filter(gene_symbol %in% c("FOXR2", "LHX6")) %>%
pivot_wider(names_from = "gene_symbol",
values_from = "gene_expression",
id_cols = c("sample", "FOXR2_positive"))
(cor_foxr2_lhx6 <- cor(foxr2_lhx6$FOXR2, foxr2_lhx6$LHX6, method = "pearson"))
## [1] -0.1011051
(sig_lhx6 <- wilcox.test(foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$LHX6,
foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$LHX6))
##
## Wilcoxon rank sum test with continuity correction
##
## data: foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2+") %>% .$LHX6 and foxr2_lhx6 %>% filter(FOXR2_positive == "FOXR2-") %>% .$LHX6
## W = 1493, p-value = 0.5729
## alternative hypothesis: true location shift is not equal to 0
lhx6_scatter <- foxr2_lhx6 %>%
ggplot(aes(x = FOXR2, y = LHX6, alpha = 0.2)) +
geom_point(alpha = 0.5, size = 3) +
ggtitle("LHX6 - EC-NB stage 4") +
annotate("text", label = glue("r == {round(cor_foxr2_lhx6,4)}"),
x = 900, y = 900, parse = T)
lhx6_vln <- foxr2_lhx6 %>%
ggplot(aes(x = FOXR2_positive, y = LHX6, fill = FOXR2_positive)) +
geom_violin(scale = "width") +
ggtitle("LHX6 - EC-NB stage 4") +
no_legend() +
stat_summary(fun.y=median, geom="crossbar", size=1,
color="black", aes(width = 0.3)) +
annotate("text", label = glue("p == {round(sig_lhx6$p.value,4)}"),
x = 2, y = 900, parse = T)
cowplot::plot_grid(dlx5_scatter, dlx5_vln,
dlx6_scatter, dlx6_vln,
lhx6_scatter, lhx6_vln,
nrow = 1, align = "hv")
This document was last rendered on:
## 2024-11-05 10:34:07
The git repository and last commit:
## Local: main /project/kleinman/bhavyaa.chandarana/from_hydra/2023-05-NB-FOXR2/public
## Remote: main @ origin (https://github.com/fungenomics/NB-FOXR2.git)
## Head: [72d1c5c] 2024-11-04: Add DOI badge
The random seed was set with set.seed(100)
The R session info:
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.1.2 (2021-11-01)
## os Rocky Linux 8.10 (Green Obsidian)
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_US.UTF-8
## ctype en_US.UTF-8
## tz America/Toronto
## date 2024-11-05
## pandoc 1.19.2.1 @ /cvmfs/soft.computecanada.ca/gentoo/2020/usr/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date (UTC) lib source
## P abind 1.4-5 2016-07-21 [?] CRAN (R 4.1.2)
## P annotate 1.72.0 2021-10-26 [?] Bioconductor
## P AnnotationDbi * 1.56.2 2021-11-09 [?] Bioconductor
## P ape 5.7-1 2023-03-13 [?] RSPM (R 4.1.2)
## P aplot 0.2.2 2023-10-06 [?] CRAN (R 4.1.2)
## P beachmat 2.10.0 2021-10-26 [?] Bioconductor
## P Biobase * 2.54.0 2021-10-26 [?] Bioconductor
## P BiocGenerics * 0.40.0 2021-10-26 [?] Bioconductor
## P BiocManager 1.30.15 2021-05-11 [?] CRAN (R 4.1.2)
## P BiocParallel 1.28.3 2021-12-09 [?] Bioconductor
## P BiocSingular 1.10.0 2021-10-26 [?] Bioconductor
## P Biostrings 2.62.0 2021-10-26 [?] Bioconductor
## P bit 4.0.4 2020-08-04 [?] CRAN (R 4.1.2)
## P bit64 4.0.5 2020-08-30 [?] CRAN (R 4.1.2)
## P bitops 1.0-7 2021-04-24 [?] CRAN (R 4.1.2)
## P blob 1.2.2 2021-07-23 [?] CRAN (R 4.1.2)
## P bslib 0.3.1 2021-10-06 [?] CRAN (R 4.1.2)
## P cachem 1.0.6 2021-08-19 [?] CRAN (R 4.1.2)
## P callr 3.7.6 2024-03-25 [?] RSPM
## P cellranger 1.1.0 2016-07-27 [?] CRAN (R 4.1.2)
## P circlize 0.4.15 2022-05-10 [?] CRAN (R 4.1.2)
## P cli 3.6.1 2023-03-23 [?] RSPM (R 4.1.2)
## P clue 0.3-64 2023-01-31 [?] CRAN (R 4.1.2)
## P cluster 2.1.2 2021-04-17 [?] CRAN (R 4.1.2)
## P clusterProfiler * 4.2.2 2022-01-13 [?] Bioconductor
## P codetools 0.2-18 2020-11-04 [?] CRAN (R 4.1.2)
## P colorspace 2.0-2 2021-06-24 [?] CRAN (R 4.1.2)
## P ComplexHeatmap * 2.10.0 2021-10-26 [?] Bioconductor
## P conflicted 1.2.0 2023-02-01 [?] CRAN (R 4.1.2)
## P cowplot * 1.1.1 2020-12-30 [?] CRAN (R 4.1.2)
## P crayon 1.4.2 2021-10-29 [?] CRAN (R 4.1.2)
## P data.table * 1.14.2 2021-09-27 [?] CRAN (R 4.1.2)
## P DBI 1.1.2 2021-12-20 [?] CRAN (R 4.1.2)
## P DelayedArray 0.20.0 2021-10-26 [?] Bioconductor
## P DelayedMatrixStats 1.16.0 2021-10-26 [?] Bioconductor
## P deldir 1.0-6 2021-10-23 [?] CRAN (R 4.1.2)
## P dendextend * 1.17.1 2023-03-25 [?] CRAN (R 4.1.2)
## P devtools 2.4.5 2022-10-11 [?] CRAN (R 4.1.2)
## P digest 0.6.35 2024-03-11 [?] CRAN (R 4.1.2)
## P DO.db 2.9 2024-09-20 [?] Bioconductor
## P doParallel 1.0.16 2020-10-16 [?] CRAN (R 4.1.2)
## P DOSE 3.20.1 2021-11-18 [?] Bioconductor
## P downloader 0.4 2015-07-09 [?] CRAN (R 4.1.2)
## P dplyr * 1.1.1 2023-03-22 [?] CRAN (R 4.1.2)
## P ellipsis 0.3.2 2021-04-29 [?] CRAN (R 4.1.2)
## P enrichplot 1.14.2 2022-02-24 [?] Bioconductor
## P evaluate 0.23 2023-11-01 [?] CRAN (R 4.1.2)
## P fansi 1.0.2 2022-01-14 [?] CRAN (R 4.1.2)
## P farver 2.1.0 2021-02-28 [?] CRAN (R 4.1.2)
## P fastmap 1.1.0 2021-01-25 [?] CRAN (R 4.1.2)
## P fastmatch 1.1-3 2021-07-23 [?] CRAN (R 4.1.2)
## P fgsea 1.20.0 2021-10-26 [?] Bioconductor
## P fitdistrplus 1.1-6 2021-09-28 [?] CRAN (R 4.1.2)
## P foreach 1.5.1 2020-10-15 [?] CRAN (R 4.1.2)
## P fs 1.5.2 2021-12-08 [?] CRAN (R 4.1.2)
## P future 1.25.0 2022-04-24 [?] CRAN (R 4.1.2)
## P future.apply 1.8.1 2021-08-10 [?] CRAN (R 4.1.2)
## P generics 0.1.3 2022-07-05 [?] CRAN (R 4.1.2)
## P GenomeInfoDb 1.30.1 2022-01-30 [?] Bioconductor
## P GenomeInfoDbData 1.2.4 2023-11-28 [?] Bioconductor
## P GenomicRanges 1.46.1 2021-11-18 [?] Bioconductor
## P GetoptLong 1.0.5 2020-12-15 [?] CRAN (R 4.1.2)
## P ggforce 0.3.3 2021-03-05 [?] CRAN (R 4.1.2)
## P ggfun 0.1.4 2024-01-19 [?] CRAN (R 4.1.2)
## P ggplot2 * 3.4.2 2023-04-03 [?] CRAN (R 4.1.2)
## P ggplotify 0.1.2 2023-08-09 [?] CRAN (R 4.1.2)
## P ggraph 2.2.1 2024-03-07 [?] CRAN (R 4.1.2)
## P ggrepel * 0.9.1 2021-01-15 [?] CRAN (R 4.1.2)
## P ggridges 0.5.3 2021-01-08 [?] CRAN (R 4.1.2)
## P ggtree 3.13.0 2024-05-19 [?] Github (YuLab-SMU/ggtree@05ef652)
## P git2r 0.29.0 2021-11-22 [?] CRAN (R 4.1.2)
## P GlobalOptions 0.1.2 2020-06-10 [?] CRAN (R 4.1.2)
## P globals 0.14.0 2020-11-22 [?] CRAN (R 4.1.2)
## P glue * 1.6.2 2022-02-24 [?] CRAN (R 4.1.2)
## P GO.db * 3.14.0 2024-09-20 [?] Bioconductor
## P goftest 1.2-3 2021-10-07 [?] CRAN (R 4.1.2)
## P GOSemSim 2.20.0 2021-10-26 [?] Bioconductor
## P graph 1.72.0 2021-10-26 [?] Bioconductor
## P graphlayouts 1.1.1 2024-03-09 [?] CRAN (R 4.1.2)
## P gridExtra 2.3 2017-09-09 [?] CRAN (R 4.1.2)
## P gridGraphics 0.5-1 2020-12-13 [?] CRAN (R 4.1.2)
## P GSEABase 1.56.0 2021-10-26 [?] Bioconductor
## P GSVA * 1.42.0 2021-10-26 [?] Bioconductor
## P gtable 0.3.0 2019-03-25 [?] CRAN (R 4.1.2)
## P HDF5Array 1.22.1 2021-11-14 [?] Bioconductor
## P here * 1.0.1 2020-12-13 [?] CRAN (R 4.1.2)
## P highr 0.9 2021-04-16 [?] CRAN (R 4.1.2)
## P hms 1.1.1 2021-09-26 [?] CRAN (R 4.1.2)
## P htmltools 0.5.2 2021-08-25 [?] CRAN (R 4.1.2)
## P htmlwidgets 1.5.4 2021-09-08 [?] CRAN (R 4.1.2)
## P httpuv 1.6.5 2022-01-05 [?] CRAN (R 4.1.2)
## P httr 1.4.2 2020-07-20 [?] CRAN (R 4.1.2)
## P ica 1.0-2 2018-05-24 [?] CRAN (R 4.1.2)
## P igraph 2.0.3 2024-03-13 [?] CRAN (R 4.1.2)
## P IRanges * 2.28.0 2021-10-26 [?] Bioconductor
## P irlba 2.3.5 2021-12-06 [?] CRAN (R 4.1.2)
## P iterators 1.0.13 2020-10-15 [?] CRAN (R 4.1.2)
## P jquerylib 0.1.4 2021-04-26 [?] CRAN (R 4.1.2)
## P jsonlite 1.8.8 2023-12-04 [?] CRAN (R 4.1.2)
## P KEGGREST 1.34.0 2021-10-26 [?] Bioconductor
## P KernSmooth 2.23-20 2021-05-03 [?] CRAN (R 4.1.2)
## P knitr 1.37 2021-12-16 [?] CRAN (R 4.1.2)
## P labeling 0.4.2 2020-10-20 [?] CRAN (R 4.1.2)
## P later 1.3.0 2021-08-18 [?] CRAN (R 4.1.2)
## P lattice 0.20-45 2021-09-22 [?] CRAN (R 4.1.2)
## P lazyeval 0.2.2 2019-03-15 [?] CRAN (R 4.1.2)
## P leiden 0.3.9 2021-07-27 [?] CRAN (R 4.1.2)
## P lifecycle 1.0.3 2022-10-07 [?] CRAN (R 4.1.2)
## P listenv 0.8.0 2019-12-05 [?] CRAN (R 4.1.2)
## P lmtest 0.9-39 2021-11-07 [?] CRAN (R 4.1.2)
## P magrittr * 2.0.3 2022-03-30 [?] CRAN (R 4.1.2)
## P MASS 7.3-54 2021-05-03 [?] CRAN (R 4.1.2)
## P Matrix 1.3-4 2021-06-01 [?] CRAN (R 4.1.2)
## P MatrixGenerics 1.6.0 2021-10-26 [?] Bioconductor
## P matrixStats 0.61.0 2021-09-17 [?] CRAN (R 4.1.2)
## P memoise 2.0.1 2021-11-26 [?] CRAN (R 4.1.2)
## P MetBrewer * 0.2.0 2022-03-21 [?] CRAN (R 4.1.2)
## P mgcv 1.8-38 2021-10-06 [?] CRAN (R 4.1.2)
## P mime 0.12 2021-09-28 [?] CRAN (R 4.1.2)
## P miniUI 0.1.1.1 2018-05-18 [?] CRAN (R 4.1.2)
## P munsell 0.5.0 2018-06-12 [?] CRAN (R 4.1.2)
## P nlme 3.1-153 2021-09-07 [?] CRAN (R 4.1.2)
## P org.Hs.eg.db * 3.14.0 2024-03-31 [?] Bioconductor
## P parallelly 1.30.0 2021-12-17 [?] CRAN (R 4.1.2)
## P patchwork 1.1.1 2020-12-17 [?] CRAN (R 4.1.2)
## P pbapply * 1.5-0 2021-09-16 [?] CRAN (R 4.1.2)
## P pillar 1.9.0 2023-03-22 [?] RSPM (R 4.1.2)
## P pkgbuild 1.4.2 2023-06-26 [?] CRAN (R 4.1.2)
## P pkgconfig 2.0.3 2019-09-22 [?] CRAN (R 4.1.2)
## P pkgload 1.3.3 2023-09-22 [?] CRAN (R 4.1.2)
## P plotly 4.10.0 2021-10-09 [?] CRAN (R 4.1.2)
## P plyr 1.8.6 2020-03-03 [?] CRAN (R 4.1.2)
## P png 0.1-7 2013-12-03 [?] CRAN (R 4.1.2)
## P polyclip 1.10-0 2019-03-14 [?] CRAN (R 4.1.2)
## P prettyunits 1.1.1 2020-01-24 [?] CRAN (R 4.1.2)
## P processx 3.8.4 2024-03-16 [?] RSPM
## P profvis 0.3.8 2023-05-02 [?] CRAN (R 4.1.2)
## P promises 1.2.0.1 2021-02-11 [?] CRAN (R 4.1.2)
## P ps 1.7.6 2024-01-18 [?] RSPM
## P purrr * 1.0.1 2023-01-10 [?] CRAN (R 4.1.2)
## P qvalue 2.26.0 2021-10-26 [?] Bioconductor
## P R6 2.5.1 2021-08-19 [?] CRAN (R 4.1.2)
## P RANN 2.6.1 2019-01-08 [?] CRAN (R 4.1.2)
## P RColorBrewer * 1.1-2 2014-12-07 [?] CRAN (R 4.1.2)
## P Rcpp 1.0.8 2022-01-13 [?] CRAN (R 4.1.2)
## P RcppAnnoy 0.0.19 2021-07-30 [?] CRAN (R 4.1.2)
## P RCurl 1.98-1.5 2021-09-17 [?] CRAN (R 4.1.2)
## P readr * 2.1.1 2021-11-30 [?] CRAN (R 4.1.2)
## P readxl * 1.3.1 2019-03-13 [?] CRAN (R 4.1.2)
## P remotes 2.4.2.1 2023-07-18 [?] CRAN (R 4.1.2)
## P renv 1.0.3 2023-09-19 [?] CRAN (R 4.1.2)
## P reshape2 1.4.4 2020-04-09 [?] CRAN (R 4.1.2)
## P reticulate 1.23 2022-01-14 [?] CRAN (R 4.1.2)
## P rhdf5 2.38.1 2022-03-10 [?] Bioconductor
## P rhdf5filters 1.6.0 2021-10-26 [?] Bioconductor
## P Rhdf5lib 1.16.0 2021-10-26 [?] Bioconductor
## P rjson 0.2.21 2022-01-09 [?] CRAN (R 4.1.2)
## P rlang 1.1.3 2024-01-10 [?] CRAN (R 4.1.2)
## P rmarkdown 2.11 2021-09-14 [?] CRAN (R 4.1.2)
## P ROCR 1.0-11 2020-05-02 [?] CRAN (R 4.1.2)
## P rpart 4.1-15 2019-04-12 [?] CRAN (R 4.1.2)
## P rprojroot 2.0.2 2020-11-15 [?] CRAN (R 4.1.2)
## P RSQLite 2.2.9 2021-12-06 [?] CRAN (R 4.1.2)
## P rsvd 1.0.5 2021-04-16 [?] RSPM (R 4.1.2)
## P Rtsne 0.15 2018-11-10 [?] CRAN (R 4.1.2)
## P S4Vectors * 0.32.4 2022-03-24 [?] Bioconductor
## P sass 0.4.0 2021-05-12 [?] CRAN (R 4.1.2)
## P ScaledMatrix 1.2.0 2021-10-26 [?] Bioconductor
## P scales 1.2.1 2022-08-20 [?] CRAN (R 4.1.2)
## P scattermore 0.7 2020-11-24 [?] CRAN (R 4.1.2)
## P scatterpie 0.2.2 2024-04-03 [?] CRAN (R 4.1.2)
## P sctransform 0.3.3 2022-01-13 [?] CRAN (R 4.1.2)
## P sessioninfo 1.2.2 2021-12-06 [?] CRAN (R 4.1.2)
## P Seurat * 4.0.0 2021-01-30 [?] CRAN (R 4.1.2)
## P SeuratObject * 4.0.4 2021-11-23 [?] CRAN (R 4.1.2)
## P shadowtext 0.1.3 2024-01-19 [?] CRAN (R 4.1.2)
## P shape 1.4.6 2021-05-19 [?] CRAN (R 4.1.2)
## P shiny 1.7.1 2021-10-02 [?] CRAN (R 4.1.2)
## P SingleCellExperiment 1.16.0 2021-10-26 [?] Bioconductor
## P sparseMatrixStats 1.6.0 2021-10-26 [?] Bioconductor
## P spatstat 1.64-1 2020-05-12 [?] CRAN (R 4.1.2)
## P spatstat.data 2.1-2 2021-12-17 [?] CRAN (R 4.1.2)
## P spatstat.utils 2.3-0 2021-12-12 [?] CRAN (R 4.1.2)
## P stringi 1.7.6 2021-11-29 [?] CRAN (R 4.1.2)
## P stringr * 1.5.0 2022-12-02 [?] CRAN (R 4.1.2)
## P SummarizedExperiment 1.24.0 2021-10-26 [?] Bioconductor
## P survival 3.2-13 2021-08-24 [?] CRAN (R 4.1.2)
## P tensor 1.5 2012-05-05 [?] CRAN (R 4.1.2)
## P tibble * 3.2.1 2023-03-20 [?] RSPM (R 4.1.2)
## P tidygraph 1.3.1 2024-01-30 [?] CRAN (R 4.1.2)
## P tidyr * 1.3.0 2023-01-24 [?] CRAN (R 4.1.2)
## P tidyselect 1.2.0 2022-10-10 [?] CRAN (R 4.1.2)
## P tidytree 0.4.6 2023-12-12 [?] CRAN (R 4.1.2)
## P treeio 1.29.0 2024-09-20 [?] Github (GuangchuangYu/treeio@9504617)
## P tweenr 1.0.2 2021-03-23 [?] CRAN (R 4.1.2)
## P tzdb 0.3.0 2022-03-28 [?] CRAN (R 4.1.2)
## P urlchecker 1.0.1 2021-11-30 [?] CRAN (R 4.1.2)
## P usethis 2.2.2 2023-07-06 [?] CRAN (R 4.1.2)
## P utf8 1.2.2 2021-07-24 [?] CRAN (R 4.1.2)
## P uwot 0.1.11 2021-12-02 [?] CRAN (R 4.1.2)
## P vctrs 0.6.5 2023-12-01 [?] CRAN (R 4.1.2)
## P viridis * 0.5.1 2018-03-29 [?] RSPM (R 4.1.2)
## P viridisLite * 0.3.0 2018-02-01 [?] CRAN (R 4.1.2)
## P withr 2.5.0 2022-03-03 [?] CRAN (R 4.1.2)
## P xfun 0.29 2021-12-14 [?] CRAN (R 4.1.2)
## P XML 3.99-0.8 2021-09-17 [?] CRAN (R 4.1.2)
## P xtable 1.8-4 2019-04-21 [?] CRAN (R 4.1.2)
## P XVector 0.34.0 2021-10-26 [?] Bioconductor
## P yaml 2.2.1 2020-02-01 [?] CRAN (R 4.1.2)
## P yulab.utils 0.1.4 2024-01-28 [?] CRAN (R 4.1.2)
## P zlibbioc 1.40.0 2021-10-26 [?] Bioconductor
## P zoo 1.8-9 2021-03-09 [?] CRAN (R 4.1.2)
##
## [1] /project/kleinman/bhavyaa.chandarana/from_hydra/2023-05-NB-FOXR2/public/renv/library/R-4.1/x86_64-pc-linux-gnu
## [2] /home/kleinman/bhavyaa.chandarana/.cache/R/renv/sandbox/R-4.1/x86_64-pc-linux-gnu/145cef2c
##
## P ── Loaded and on-disk path mismatch.
##
## ──────────────────────────────────────────────────────────────────────────────
A project of the Kleinman Lab at McGill University, using the rr reproducible research template.